PROBABILIDAD. Soluciones.

Ejercicio 1

Se tienen cinco personas que llamaremos A, B, C, D y E. De ellas hay que elegir, al azar, a tres para formar una comisión. Escribe el espacio muestral y calcula las siguientes probabilidades:

Para formar una comisión, no importa el orden en el que son elegidos. El espacio muestral es:

$$\Omega = \{(A, B, C); (A, B, D); (A, B, E); (A, C, D); (A, C, E); (A, D, E); (B, C, D); (B, C, E); (B, D, E); (C, D, E)\}$$

a) Que sean elegidas las personas A y B para formar parte de dicha comisión.

$$P(A,B) = \frac{3}{10} = 0.3$$

b) Que sean elegidas las personas A y B, pero no C.

$$P(A, B, no C) = \frac{2}{10} = 0,2$$

c) Que sea elegida A, pero no lo sean ni C ni E.

$$P(A, no C, no E) = \frac{1}{10} = 0.1$$

d) Que no sea elegida A para formar parte de la comisión.

$$P(no A) = \frac{4}{10} = 0,4$$

Ejercicio 2

Una urna A contiene 2 bolas blancas y 3 negras, otra urna B contiene 4 bolas blancas y 3 negras. Se saca al azar una bola de A y, sin verla, se coloca en B.

$$U_A = \{2B, 3N\}$$
; $U_B = \{4B, 3N\}$

a) Si ahora se saca una bola de la urna B, ¿qué probabilidad hay de que sea negra?

$$\frac{P(B) = \frac{2}{5}}{D_{B'}} = \{5B, 3N\} \begin{cases}
P(B) = \frac{2}{5} \cdot \frac{5}{8} = \frac{1}{4} = 0,25 \\
P(N) = \frac{2}{5} \cdot \frac{3}{8} = \frac{3}{20} = 0,15
\end{cases}$$

$$\Rightarrow P(N) = 0,15 + 0,3 = 0,45$$

$$\frac{P(B) = \frac{3}{5} \cdot \frac{4}{8} = \frac{3}{10} = 0,3$$

$$P(N) = \frac{3}{5} \cdot \frac{4}{8} = \frac{3}{10} = 0,3$$

b) Si en lugar de una, se sacan dos bolas, ¿qué probabilidad hay de que sean del mismo color?

$$\begin{array}{c} & \begin{array}{c} & & \\ & &$$

Para no hacer un árbol tan extenso, podríamos haber hecho lo siguiente:

Los trabajadores de una empresa

Las fichas del personal de una empresa nacional, da la siguiente relación entre los estudios realizados y el puesto de trabajo de sus empleados:

	Personas empleadas				
ESTUDIOS	Administración	Personal	Producción		
Primarios	4	10	400		
Medios	10	20	200		
Superiores	20	40	100		

Si se elige al azar uno de los empleados, calcula la probabilidad de que:

a) Tenga estudios medios.

$$P(Estudios\ medios) = \frac{230}{804} = 0,286$$

b) Sea administrativo.

$$P(Administración) = \frac{34}{804} = 0,042$$

c) Tenga estudios superiores y esté en personal.

$$P(Estudios \ superiores \ y \ personal) = \frac{40}{804} = 0.05$$

d) Esté en producción, pero no tenga sólo estudios primarios.

$$P(Producción y no estudios primarios) = \frac{300}{804} = 0,373$$

e) Esté en producción o tenga estudios primarios.

$$P(Producción \ o \ estudios \ primarios) = \frac{714}{804} = 0,888$$

	Pe			
ESTUDIOS	Administración	Personal	Producción	Suma
Primarios	4	10	400	414
Medios	10	20	200	230
Superiores	20	40	100	160
Suma	34	70	700	804

Uno de cartas

Una baraja española completa está formada por 48 cartas, distribuidas en 4 palos (oros, copas, espadas y bastos) y cada palo consta de 12 cartas numeradas del 1 al 12. Las figuras son las cartas de cualquier palo numeradas con el 10 (sota), 11 (caballo) y 12 (rey). Se barajan las cartas y se extraen tres sin reposición, calcula las siguientes probabilidades:

a) Obtener sota, caballo y rey, y en este orden.

$$P(S,C,R) = \frac{4}{48} \cdot \frac{4}{47} \cdot \frac{4}{46} = \frac{2}{3243} = 0,000617$$

b) Obtener una sota, un caballo y un rey, en el orden que sea.

Nos valen los resultados
$$\{(S,C,R);(S,R,C);(C,S,R);(C,R,S);(R,S,C);(R,C,S)\}$$

 $P(una sota, un caballo y un rey) = 6 \cdot \left(\frac{4}{48} \cdot \frac{4}{47} \cdot \frac{4}{46}\right) = \frac{4}{1081} = 0,0037$

c) Obtener tres figuras.

$$P(3 \, figuras) = \frac{12}{48} \cdot \frac{11}{47} \cdot \frac{10}{46} = \frac{55}{4324} = 0,0127$$

d) Obtener tres cartas del mismo palo.

$$P(3 \ cartas \ de \ igual \ palo) = P(3 \ oros) + P(3 \ copas) + P(3 \ espadas) + P(3 \ bastos) = 4 \cdot \left(\frac{12}{48} \cdot \frac{11}{47} \cdot \frac{10}{46}\right) = 0,0509$$
También así:

$$P(3 \text{ cartas de igual palo}) = P(\text{una carta cualquiera y dos cartas de igual palo a la 1}^a) = 1 \cdot \frac{11}{47} \cdot \frac{10}{46} = 0,0509$$

e) Obtener dos oros y una copa.

Nos valen los resultados
$$\{(O,O,C);(O,C,O);(C,O,O)\}$$

$$P(dos\ oros\ y\ una\ copa) = 3 \cdot \left(\frac{12}{48} \cdot \frac{11}{47} \cdot \frac{12}{46}\right) = \frac{99}{2162} = 0,0458$$