Semejanza

Dos figuras son semejantes cuando tienen la misma forma.

En dos figuras semejantes:

- Los ángulos correspondientes son todos iguales.
- Los segmentos correspondientes son proporcionales y la razón la llamamos razón de semejanza.

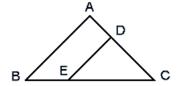
La escala de un plano, mapa, etc. es la razón de semejanza, es decir el cociente entre cada segmento del plano y su correspondiente en la realidad. Una escala 1:50 expresa que una unidad de medida en el plano son 50 unidades de medida en la realidad.

Semejanza de triángulos:

Dos triángulos semejantes tienen ángulos iguales y lados proporcionales. "Para que dos triángulos sean semejantes basta con que tengan dos ángulos iguales".

Teorema de Thales

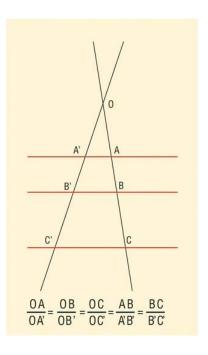
En el diagrama inferior el triángulo DEC es semejante al triángulo ABC. Esto significa que los siguientes pares de ángulos son iguales: BAC = EDC; ABC = DEC; los ángulos ACB y DCE miden lo mismo.



Los dos triángulos están en posición de thales y se cumplen las siguientes relaciones de proporcionalidad:

$$\frac{AB}{DE} = \frac{AC}{DC} = \frac{BC}{EC}$$

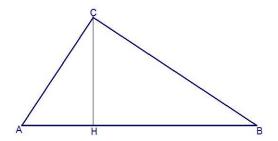
$$\frac{AB}{AC} = \frac{DE}{DC} \quad ; \quad \frac{AB}{BC} = \frac{DE}{EC} \quad ; \quad \frac{AC}{BC} = \frac{DC}{EC}$$



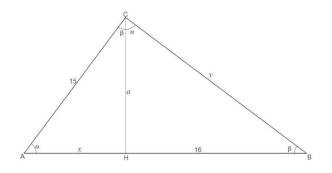
Si en un **triángulo rectángulo**, dibujamos la altura correspondiente a la hipotenusa, el triángulo original y los dos triángulos rectángulos obtenidos, tomando esa altura como un cateto, son semejantes. Esta propiedad podemos aplicarla para resolver ejercicios como el del ejemplo siguiente:

jlmat.es Matemáticas. ESO

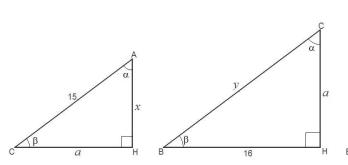
En el triángulo rectángulo ABC de hipotenusa AB, tenemos que AC=15. Si la altura CH divide a AB en los segmentos AH y HB con HB=16, calcula el área del triángulo ABC.

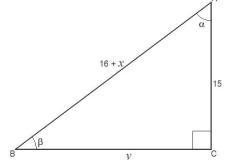


Como el triángulo ABC es rectángulo \Rightarrow los triángulos ABC, ACH y CBH son semejantes, como se puede apreciar en el siguiente dibujo, ya que los ángulos α y β son complementarios $(\alpha + \beta = 90^{\circ})$ y tienen ángulos iguales.



Colocamos los triángulos ABC, ACH y CBH en la misma posición y marcamos los lados y los ángulos para evitar confusiones:





Aplicando el teorema de Thales obtenemos la siguiente proporción:

$$\frac{15}{x} = \frac{16+x}{15} \implies 15^2 = x(16+x) \implies 225 = 16x + x^2 \implies x^2 + 16x - 225 = 0$$

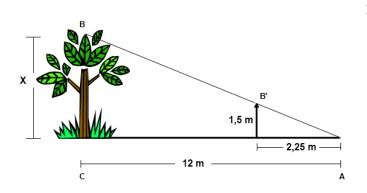
$$x = \frac{-16 \pm \sqrt{16^2 - 4 \cdot \left(-225\right)}}{2} = \frac{-16 \pm \sqrt{1156}}{2} = \frac{-16 \pm 34}{2} \Rightarrow \begin{cases} \boxed{x = 9} \\ \boxed{x} \end{cases} , una \ vez \ encontrado \ el \ valor \ x, buscamos \ el \ de \ a. \end{cases}$$

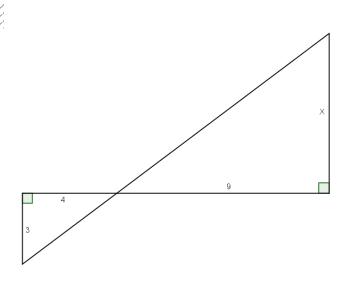
$$\frac{a}{16} = \frac{9}{a} \implies a^2 = 144 \implies \boxed{a = 12}$$
; también podemos hallar y: $\frac{y}{15} = \frac{16}{12} \implies \boxed{y = 20}$

Entonces el área del triángulo valdrá:
$$A = \frac{25 \cdot 12}{2} = 150 u^2$$
 o $A = \frac{15 \cdot 20}{2} = 150 u^2$

jlmat.es Matemáticas. ESO

En las siguientes figuras, calcula el valor de x.





Solución:

Los dos triángulos rectángulos son semejantes porque tienen dos ángulos iguales.

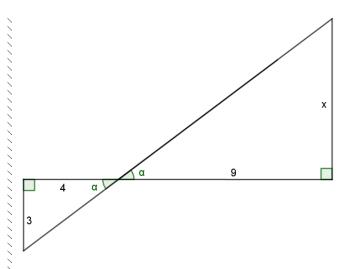
El teorema de Tales nos dice:

El cociente de lados homólogos (ocupan la misma posición) es constante:

$$\frac{x}{1.5} = \frac{12}{2.5} \rightarrow x = \frac{1.5 \cdot 12}{2.5} = 7.2 \text{ m}.$$

También, que si dividimos dos lados en un triángulo da el mismo resultado que si dividimos los mismos lados en el triángulo semejante:

$$\frac{x}{12} = \frac{1.5}{2.5} \rightarrow x = \frac{1.5 \cdot 12}{2.5} = 7.2 \text{ m}.$$



Los dos triángulos rectángulos son semejantes porque tienen dos ángulos iguales.

El cociente de lados homólogos es constante:

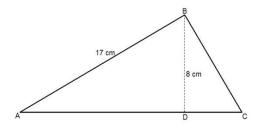
$$\frac{x}{3} = \frac{9}{4} \rightarrow x = \frac{3.9}{4} = 6,75$$

También se cumple esta proporción:

$$\frac{x}{9} = \frac{3}{4} \rightarrow x = \frac{9 \cdot 3}{4} = 6,75$$

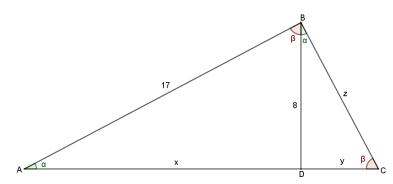
El triángulo ABC es rectángulo. Si BD es una altura de ese triángulo y hemos tomado las medidas:

AB = 17 cm y BD = 8 cm. Usando el teorema de Pitágoras y la semejanza de triángulos, calcula el área y el perímetro del triángulo ABC.

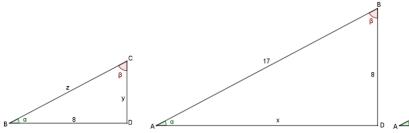


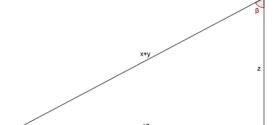
Solución:

Como el triángulo ABC es rectángulo \Rightarrow los triángulos ABC, ADB y BDC son semejantes, como se puede apreciar en el siguiente dibujo, ya que los ángulos α y β son complementarios $(\alpha + \beta = 90^{\circ}) \rightarrow$ los tres triángulos tienen ángulos iguales.



Colocamos los triángulos ABC, ADB y BDC en la misma posición y marcamos los lados y los ángulos para evitar confusiones:





Aplicando el teorema de Pitágoras al triángulo que está en el centro, tenemos:

$$x^{2} + 8^{2} = 17^{2}$$
 \rightarrow $x^{2} + 64 = 289$ \rightarrow $x^{2} = 225$ \rightarrow $x = \sqrt{225} = 15$

Ahora, según el teorema de Thales, si dividimos dos lados en uno de los triángulos, obtenemos el mismo resultado que si dividimos los mismos lados en otro triángulo demejante \rightarrow tenemos las siguientes proporciones:

$$\frac{y}{8} = \frac{8}{x} \rightarrow \frac{y}{8} = \frac{8}{15} \rightarrow y = \frac{8 \cdot 8}{15} \approx 4,27$$

$$\frac{z}{8} = \frac{17}{x} \rightarrow \frac{z}{8} = \frac{17}{15} \rightarrow z = \frac{8 \cdot 17}{15} \approx 9,07$$

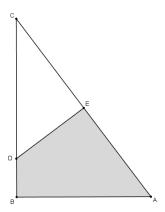
En el triángulo ABC, una base mide x + y = 15 + 4,27 = 19,27 cm y su altura correspondiente, 8 cm.

Entonces el área del triángulo valdrá: $A = \frac{19,27 \cdot 8}{2} = 77,08 \text{ cm}^2$

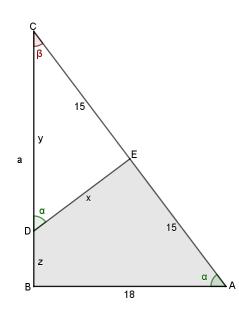
El perímetro será: $P = x + y + z + 17 \rightarrow P = 45,34$ cm.

ilmat.es Matemáticas. ESO

El triángulo ABC es rectángulo. E es el punto medio del lado AC y el segmento DE es perpendicular al segmento AC. Calcula el área del cuadrilátero ABDE, sabiendo que AC=30 cm y AB=18 cm.



Solución:



Calcularemos el área del cuadrilátero ABDE como la diferencia entre las áreas de los dos triángulos rectángulos de la figura:

$$A_{\textit{cuadrilátero}} = A_{\textit{triángulo ABC}} - A_{\textit{triángulo DEC}} = \frac{18 \cdot a}{2} - \frac{x \cdot 15}{2}$$

Aplicando el teorema de Pitágoras en el triángulo ABC, tenemos:

$$a^2 + 18^2 = 30^2 \rightarrow a^2 + 324 = 900 \rightarrow a^2 = 576 \rightarrow a = \sqrt{576} = 24 \text{ cm}$$

El triángulo ABC es rectángulo y, por la contrucción de la figura, vemos que es semejante al triángulo DEC, ya que tienen ángulos iguales $(\alpha + \beta = 90^{\circ})$.

Según el teorema de Tales, se cumple la proporción:

$$\frac{a}{18} = \frac{15}{x} \rightarrow \frac{24}{18} = \frac{15}{x} \rightarrow x = \frac{18 \cdot 15}{24} = 11,25 \text{ cm}$$

$$A_{cuadrilátero} = \frac{18 \cdot 24}{2} - \frac{11,25 \cdot 15}{2} = 216 - 84,375 = 131,625 \text{ cm}^2$$