

### UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

EVALUACIÓN PARA EL ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

 $\mathbf{C}$ 

Curso 2023-2024

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

## **INSTRUCCIONES GENERALES Y CALIFICACIÓN**

Después de leer atentamente todas las preguntas, el alumno deberá responder razonadamente a **cinco** preguntas cualesquiera a elegir entre las diez que se le proponen.

Cada ejercicio se valorará sobre 2 puntos, y si consta de dos apartados, cada apartado se valorará sobre 1 punto. **DURACIÓN:** 90 minutos.

1. (2 puntos) Se considera la matriz *A* dada por:

$$A = \left(\begin{array}{rrr} 1 - a & -2 & -1 \\ 1 & a & 1 \\ 2 & -2 & a \end{array}\right)$$

- a) Determine los valores del parámetro  $a \in \mathbb{R}$  para los que exista la inversa de A.
- b) Para a=-2, calcule  $A^{-1}$ .
- 2. (2 puntos) Sea f(x) una función real de variable real cuya derivada viene dada por la siguiente expresión:

$$f'(x) = x^2 + x - 2$$

- a) Obtenga la expresión de la función f(x) sabiendo que pasa por el punto (0,2).
- b) Determine los intervalos de crecimiento y decrecimiento de la función f(x), clasificando sus extremos relativos, si procede.
- 3. (2 puntos) Se considera la función real de variable real definida por la siguiente expresión:

$$f(x) = \begin{cases} x^2 - x + e^2 & si \quad x < 1 \\ ae^{2x} & si \quad x \ge 1 \end{cases}$$

- a) Halle el valor del parámetro  $a \in \mathbb{R}$  para que f(x) sea continua en todo su dominio.
- b) Para a=1, calcule el área de la región acotada del plano delimitada por la gráfica de la función anterior, el eje de abscisas y las rectas x=1 y x=2.
- 4. (2 puntos) Se considera la siguiente función real de variable real:

$$f(x) = \frac{x-2}{x^2 - 9}$$

- a) Determine las asíntotas de esta función.
- b) Obtenga la ecuación de la recta tangente a la función en el punto de abscisa x=0.
- 5. (2 puntos) Se dispone de 60 gramos de ácido acetilsalicílico para elaborar tabletas en dos formatos, de 4 gramos y de 3 gramos respectivamente. Se necesitan al menos tres tabletas de 4 gramos, al menos ocho tabletas de 3 gramos y al menos el doble de tabletas de 3 gramos que de 4 gramos. Cada tableta de 4 gramos proporciona un beneficio de 1,5 euros y cada tableta de 3 gramos proporciona un beneficio de 1 euro. ¿Cuántas tabletas deberían fabricarse de cada tipo para maximizar el beneficio? ¿Cuál es el beneficio máximo?

- 6. (2 puntos) Un equipo de baloncesto regional ha vendido tres tipos de entradas para su último partido. Las entradas generales se han vendido a 10 euros, las entradas para estudiantes a 8 euros y las entradas infantiles a 5 euros. El equipo ha conseguido vender 600 entradas y ganar 4900 euros. Además, se sabe que ha vendido el doble de entradas generales que de entradas infantiles. Plantee el sistema de ecuaciones y resuelva para calcular el número de entradas vendidas de cada tipo.
- 7. (2 puntos) Se considera el sistema de ecuaciones lineales dependiente del parámetro  $a \in \mathbb{R}$ :

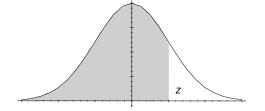
$$\left. \begin{array}{rcl} 2x+y+z & = & a \\ x+ay+z & = & a+1 \\ x+y+az & = & 2 \end{array} \right\}$$

- a) Discuta el sistema en función de los valores del parámetro a.
- b) Resuelva el sistema de ecuaciones para a=1.
- 8. (2 puntos) En un festival de música con 200 asistentes se observa que a 90 personas les gusta el pop, a 70 el techno y a 30 les gustan ambos géneros. Eligiendo al azar a un asistente del festival, calcule la probabilidad de que:
  - a) Le guste al menos uno de los dos géneros musicales.
  - b) Le guste el techno pero no el pop.
- 9. (2 puntos) La cantidad de agua absorbida por un tipo particular de planta acuática se puede modelar con una variable aleatoria con distribución normal de media  $\mu$  y desviación típica  $\sigma=8$  ml.
  - a) Se selecciona aleatoriamente una muestra de 25 plantas acuáticas y se determina que la cantidad media de agua absorbida es de 120 ml. Calcule un intervalo de confianza del  $95\,\%$  para la media de la cantidad de agua absorbida por este tipo de planta acuática.
  - b) Determine el tamaño mínimo de la muestra necesario para que el error máximo, en la estimación de la media de la cantidad de agua absorbida, sea menor que 1 ml, con un nivel de confianza del 90%.
- 10. (2 puntos) En tres tanques, A, B y C, de una piscifactoría se crían, respectivamente, el  $35\,\%$ , el  $20\,\%$  y el  $45\,\%$  de los alevines de salmón noruego. Se sabe que el  $15\,\%$  de los alevines criados en el tanque A, el  $30\,\%$  de los alevines criados en el tanque B y el  $25\,\%$  de los alevines criados en el tanque C miden más de  $35\,$ mm. Eligiendo al azar un alevín de salmón noruego, calcule la probabilidad de que:
  - a) Mida más de 35 mm.
  - b) Sabiendo que no mide más de 35 mm, proceda del tanque C.

## Matemáticas Aplicadas a las Ciencias Sociales

## ÁREAS BAJO LA DISTRIBUCIÓN DE PROBABILIDAD NORMAL ESTÁNDAR

Los valores en la tabla representan el área bajo la curva normal hasta un valor positivo de z.



| Z   | ,00    | ,01    | ,02    | ,03    | ,04    | ,05    | ,06    | ,07    | ,08    | ,09    |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0,0 | 0,5000 | 0,5040 | 0,5080 | 0,5120 | 0,5160 | 0,5199 | 0,5239 | 0,5279 | 0,5319 | 0,5359 |
| 0,1 | 0,5398 | 0,5438 | 0,5478 | 0,5517 | 0,5557 | 0,5596 | 0,5636 | 0,5675 | 0,5714 | 0,5753 |
| 0,2 | 0,5793 | 0,5832 | 0,5871 | 0,5910 | 0,5948 | 0,5987 | 0,6026 | 0,6064 | 0,6103 | 0,6141 |
| 0,3 | 0,6179 | 0,6217 | 0,6255 | 0,6293 | 0,6331 | 0,6368 | 0,6406 | 0,6443 | 0,6480 | 0,6517 |
| 0,4 | 0,6554 | 0,6591 | 0,6628 | 0,6664 | 0,6700 | 0,6736 | 0,6772 | 0,6808 | 0,6844 | 0,6879 |
| 0,5 | 0,6915 | 0,6950 | 0,6985 | 0,7019 | 0,7054 | 0,7088 | 0,7123 | 0,7157 | 0,7190 | 0,7224 |
| 0,6 | 0,7257 | 0,7291 | 0,7324 | 0,7357 | 0,7389 | 0,7422 | 0,7454 | 0,7486 | 0,7517 | 0,7549 |
| 0,7 | 0,7580 | 0,7611 | 0,7642 | 0,7673 | 0,7703 | 0,7734 | 0,7764 | 0,7794 | 0,7823 | 0,7852 |
| 0,8 | 0,7881 | 0,7910 | 0,7939 | 0,7967 | 0,7995 | 0,8023 | 0,8051 | 0,8078 | 0,8106 | 0,8133 |
| 0,9 | 0,8159 | 0,8186 | 0,8212 | 0,8238 | 0,8264 | 0,8289 | 0,8315 | 0,8340 | 0,8365 | 0,8389 |
| 1,0 | 0,8413 | 0,8438 | 0,8461 | 0,8485 | 0,8508 | 0,8531 | 0,8554 | 0,8577 | 0,8599 | 0,8621 |
| 1,1 | 0,8643 | 0,8665 | 0,8686 | 0,8708 | 0,8729 | 0,8749 | 0,8770 | 0,8790 | 0,8810 | 0,8830 |
| 1,2 | 0,8849 | 0,8869 | 0,8888 | 0,8907 | 0,8925 | 0,8944 | 0,8962 | 0,8980 | 0,8997 | 0,9015 |
| 1,3 | 0,9032 | 0,9049 | 0,9066 | 0,9082 | 0,9099 | 0,9115 | 0,9131 | 0,9147 | 0,9162 | 0,9177 |
| 1,4 | 0,9192 | 0,9207 | 0,9222 | 0,9236 | 0,9251 | 0,9265 | 0,9279 | 0,9292 | 0,9306 | 0,9319 |
| 1,5 | 0,9332 | 0,9345 | 0,9357 | 0,9370 | 0,9382 | 0,9394 | 0,9406 | 0,9418 | 0,9429 | 0,9441 |
| 1,6 | 0,9452 | 0,9463 | 0,9474 | 0,9484 | 0,9495 | 0,9505 | 0,9515 | 0,9525 | 0,9535 | 0,9545 |
| 1,7 | 0,9554 | 0,9564 | 0,9573 | 0,9582 | 0,9591 | 0,9599 | 0,9608 | 0,9616 | 0,9625 | 0,9633 |
| 1,8 | 0,9641 | 0,9649 | 0,9656 | 0,9664 | 0,9671 | 0,9678 | 0,9686 | 0,9693 | 0,9699 | 0,9706 |
| 1,9 | 0,9713 | 0,9719 | 0,9726 | 0,9732 | 0,9738 | 0,9744 | 0,9750 | 0,9756 | 0,9761 | 0,9767 |
| 2,0 | 0,9772 | 0,9778 | 0,9783 | 0,9788 | 0,9793 | 0,9798 | 0,9803 | 0,9808 | 0,9812 | 0,9817 |
| 2,1 | 0,9821 | 0,9826 | 0,9830 | 0,9834 | 0,9838 | 0,9842 | 0,9846 | 0,9850 | 0,9854 | 0,9857 |
| 2,2 | 0,9861 | 0,9864 | 0,9868 | 0,9871 | 0,9875 | 0,9878 | 0,9881 | 0,9884 | 0,9887 | 0,9890 |
| 2,3 | 0,9893 | 0,9896 | 0,9898 | 0,9901 | 0,9904 | 0,9906 | 0,9909 | 0,9911 | 0,9913 | 0,9916 |
| 2,4 | 0,9918 | 0,9920 | 0,9922 | 0,9925 | 0,9927 | 0,9929 | 0,9931 | 0,9932 | 0,9934 | 0,9936 |
| 2,5 | 0,9938 | 0,9940 | 0,9941 | 0,9943 | 0,9945 | 0,9946 | 0,9948 | 0,9949 | 0,9951 | 0,9952 |
| 2,6 | 0,9953 | 0,9954 | 0,9956 | 0,9957 | 0,9959 | 0,9960 | 0,9961 | 0,9962 | 0,9963 | 0,9964 |
| 2,7 | 0,9965 | 0,9966 | 0,9967 | 0,9968 | 0,9969 | 0,9970 | 0,9971 | 0,9972 | 0,9973 | 0,9974 |
| 2,8 | 0,9974 | 0,9975 | 0,9976 | 0,9977 | 0,9977 | 0,9978 | 0,9979 | 0,9979 | 0,9980 | 0,9981 |
| 2,9 | 0,9981 | 0,9982 | 0,9982 | 0,9983 | 0,9984 | 0,9984 | 0,9985 | 0,9985 | 0,9986 | 0,9986 |

# MATEMATICAS APLICADAS A LAS CIENCIAS SOCIALES II CRITERIOS ESPECÍFICOS DE CORRECCIÓN Y CALIFICACIÓN

ATENCIÓN: La calificación debe hacerse en múltiplos de 0,25 puntos

| Apartado (a): 1 punto.                                                       |         |
|------------------------------------------------------------------------------|---------|
| Planteamiento correcto de la existencia de A <sup>-1</sup>                   |         |
| Cálculo correcto del determinante de la matriz A                             |         |
| Cálculo correcto de los valores de los parámetros                            | puntos. |
| Apartado (b): 1 punto.                                                       |         |
| Expresión correcta del procedimiento de cálculo de A-1                       | puntos. |
| Cálculo correcto de la inversa                                               | puntos. |
| Ejercicio 2. (Puntuación máxima: 2 puntos)                                   |         |
| Apartado (a): 1 punto.                                                       |         |
| Obtención de la función primitiva                                            | -       |
| Determinación de la constante de integración y de la función0,50             | puntos. |
| Apartado (b): 1 punto.                                                       |         |
| Cálculo correcto de los intervalos de crecimiento y decrecimiento 0,50       | puntos. |
| Determinación correcta del máximo y mínimo (basta con la abscisa) 0,50       | puntos  |
| Ejercicio 3. (Puntuación máxima: 2 puntos)                                   |         |
| Apartado (a): 1 punto.                                                       |         |
| Valoración de la continuidad para $x \neq 1$                                 | puntos. |
| Estudio correcto de la continuidad en $x = 1$                                | puntos. |
| Cálculo correcto del valor del parámetro a para que f sea continua 0,25      | puntos. |
| Apartado (b): 1 punto.                                                       | _       |
| Estudio de los puntos de corte de la función con el eje OX                   | puntos. |
| Planteamiento correcto del área                                              |         |
| Obtención de una primitiva de la función                                     | puntos. |
| Cálculo correcto del área                                                    | -       |
| Ejercicio 4. (Puntuación máxima: 2 puntos)                                   |         |
| Apartado (a): 1 punto.                                                       |         |
| Estudio completo de las asíntotas verticales                                 | puntos. |
| Determinación de la asíntota horizontal                                      | puntos. |
| Justificación de la ausencia de asíntotas oblicuas                           | puntos. |
| Apartado (b): 1 punto.                                                       |         |
| Planteamiento correcto del cálculo de la recta tangente                      | puntos  |
| Cálculo correcto de la derivada de la función                                | puntos. |
| Determinación de la pendiente                                                | puntos. |
| Expresión de la recta tangente en cualquiera de sus formas                   |         |
| Ejercicio 5. (Puntuación máxima: 2 puntos)                                   |         |
| Definición de las variables y expresión correcta de la función objetivo 0,25 | puntos. |
| Determinación correcta de las restricciones                                  |         |
| Representación correcta de la región factible                                | _       |
| Cálculo de los vértices de la región factible                                |         |
| Obtención correcta de la solución contextualizada                            | _       |

NOTA: La resolución de los ejercicios por cualquier otro procedimiento correcto diferente al propuesto por los coordinadores ha de valorarse con los criterios convenientemente adaptados.

| Ejercicio 6. (Puntuación máxima: 2 puntos)           |
|------------------------------------------------------|
| Descripción adecuada de las tres incógnitas          |
| Planteamiento correcto del sistema de ecuaciones     |
| Resolución correcta del sistema por método matricial |
| Obtención correcta de la solución contextualizada    |
|                                                      |
| Ejercicio 7. (Puntuación máxima: 2 puntos)           |
| Apartado (a): 1 punto.                               |
| Cálculo correcto de los valores críticos             |
| Discusión correcta                                   |
| Apartado (b): 1 punto.                               |
| Solución correcta del sistema                        |
| Ejercicio 8. (Puntuación máxima: 2 puntos)           |
| Apartado (a): 1 punto.                               |
| Planteamiento correcto de la probabilidad            |
| Cálculo correcto de la probabilidad                  |
| Apartado (b): 1 punto.                               |
| Planteamiento correcto de la probabilidad            |
| Cálculo correcto de la probabilidad                  |
| Ejercicio 9. (Puntuación máxima: 2 puntos)           |
| Apartado (a): 1 punto.                               |
| Cálculo correcto de $z_{\alpha/2}$                   |
| Obtención del error                                  |
| Determinación correcta del intervalo                 |
| Apartado (b): 1 punto.                               |
| Cálculo correcto de $z_{\alpha/2}$                   |
| Planteamiento correcto                               |
| Obtención correcta del tamaño mínimo                 |
| Ejercicio 10. (Puntuación máxima: 2 puntos)          |
| Apartado (a): 1 punto.                               |
| Planteamiento correcto de la probabilidad            |
| Cálculo correcto de la probabilidad                  |
| Apartado (b): 1 punto.                               |
| Planteamiento correcto de la probabilidad            |
| Cálculo correcto de la probabilidad                  |

#### SOLUCIONES

- 1. a)  $|A| = -a^3 + a^2 + 2a = -a(a+1)(a-2) = 0 \iff a = 0, a = 2, a = -1$ . Por tanto, la matriz A tiene inversa siempre que  $a \neq -1, 0, 2$ .
  - b) Para a = -2 se obtiene:

$$A^{-1} = \begin{pmatrix} 3/4 & -1/4 & -1/2 \\ 1/2 & -1/2 & -1/2 \\ 1/4 & 1/4 & -1/2 \end{pmatrix}$$

2. a)

$$f(x) = \int f'(x)dx = \frac{x^3}{3} + \frac{x^2}{2} - 2x + c$$

$$f(0) = c = 2$$

- Por tanto,  $f(x) = \frac{x^3}{3} + \frac{x^2}{2} 2x + 2$ . b)  $f'(x) = x^2 + x 2$ ,  $f'(x) = 0 \Leftrightarrow x = -2$  y = x = 1.
  - $f'(x) > 0 \Leftrightarrow x \in (-\infty, -2), (1, +\infty)$  y, por tanto, f(x) es creciente en esos intervalos.  $f'(x) < 0 \Leftrightarrow x \in (-2, 1)$  y, por tanto, f(x) es decreciente en ese intervalo.

En consecuencia tiene un máximo relativo en x = -2 y un mínimo relativo en x = 1.

- 3. a) La función f(x) es continua en cualquier punto  $x \neq 1$ . Por tanto, basta analizar la situación en x=1.  $\lim_{x \to 1^-} (x^2-x+e^2) = e^2$ ,  $\lim_{x \to 1^+} ae^{2x} = f(1) = ae^2$ La función es continua si a=1.
  - b) Como la exponencial no corta al eje OX, el área pedida es:

$$\text{Area} = \int_{1}^{2} e^{2x} dx = \frac{1}{2} e^{2x} \Big|_{1}^{2} = \frac{1}{2} (e^{4} - e^{2}) u^{2}$$

4. a)

$$f(x) = \frac{x-2}{x^2 - 9} = \frac{x-2}{(x-3)(x+3)}$$

Asíntotas verticales:

$$\lim_{x \to 3^+} f(x) = +\infty \qquad \lim_{x \to 3^-} f(x) = -\infty$$

$$\lim_{x \to -3^+} f(x) = +\infty \qquad \lim_{x \to -3^-} f(x) = -\infty$$

Por tanto, tiene asíntotas verticales en x = -3 y en x = 3.

Asíntotas horizontales:

$$\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} \frac{x-2}{x^2-9} = 0 \qquad \lim_{x\to -\infty} f(x) = \lim_{x\to -\infty} \frac{x-2}{x^2-9} = 0$$

La función f(x) tiene una asíntota horizontal en y=0.

Asíntotas oblicuas: no tiene por tener asíntotas horizontales.

b) Ecuación de la recta tangente a la gráfica en  $x_0 = 0$ :

$$y - y_0 = f'(x_0)(x - x_0)$$
$$y_0 = f(0) = 2/9$$
$$f'(x) = \frac{-x^2 + 4x - 9}{(x^2 - 9)^2}$$
$$f'(0) = -1/9$$

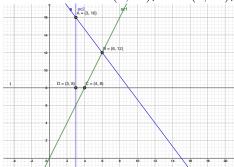
La ecuación de la recta tangente a la gráfica de f(x) en  $x_0 = 0$  será:

$$y - \frac{2}{9} = \frac{-1}{9}x \implies y = \frac{2}{9} - \frac{1}{9}x$$

5. Sea x= número de tabletas de 4 g. que se fabrican, e y= número de tabletas de 3 g. que se fabrican. Entonces:

$$S = \{4x + 3y \le 60, \ 2x - y \le 0, \ x \ge 3, \ y \ge 8\},\$$

con vértices A = (3, 16), B = (6, 12), C = (4, 8), D = (3, 8).



La función beneficio es B(x,y)=1.5x+y. Evaluamos en los vértices de la región factible obtenidos:

- B(3,16) = 20.5
- $B(6,12) = 21 \rightarrow \mathsf{Máximo}$
- B(4,8) = 14
- B(3,8) = 12,5

Se deben fabricar 6 tabletas de 4 gramos y 12 tabletas de 3 gramos. El beneficio obtenido será de 21 euros.

6. a) Sea x= número de entradas generales vendidas, y= número de entradas de estudiante y z= número de entradas infantiles.

$$\begin{cases} x + y + z &= 600 \\ 10x + 8y + 5z &= 4900 \implies \\ x - 2z &= 0 \end{cases}$$

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 10 & 8 & 5 \\ 1 & 0 & -2 \end{pmatrix}$$

Obtenemos que la solución es:

$$x = 200, y = 300, z = 100$$

Se han vendido 200 entradas generales, 300 entradas de estudiante, y 100 entradas infantiles.

7. a) La matriz del sistema es:

$$(A|B) = \left(\begin{array}{ccc|c} 2 & 1 & 1 & a \\ 1 & a & 1 & a+1 \\ 1 & 1 & a & 2 \end{array}\right)$$

Cuyo determinante es  $|A| = 2a^2 - 2a$ .

Así, 
$$2a^2 - 2a = 0 \Rightarrow a = 0$$
 ó  $a = 1$ .

Por lo tanto:

- Si  $a \neq 0, 1, rg(A) = 3, rg(A|B) = 3 = n^{\circ}$  incógnitas. SISTEMA COMPATIBLE DETERMINADO.
- Si a = 0, rg(A) = 2, rg(A|B) = 3. SISTEMA INCOMPATIBLE.
- Si  $a=1, rg(A)=2, rg(A|B)=2 \neq {\sf n}^{\sf o}$  de incógnitas. SISTEMA COMPATIBLE INDETERMINADO.
- b) Para a=1, el sistema es compatible indeterminado. Resolvemos por Gauss.

Haciendo  $z = \lambda$ ,

$$\begin{cases}
2x + y &= 1 - \lambda \\
y &= 3 - \lambda
\end{cases}$$

obtenemos  $x=-1, y=3-\lambda, z=\lambda$ .

- 8. Definimos los sucesos A='a una persona le gusta el pop', B='a una persona le gusta el techno'. Sabemos que P(A)=0.45, P(B)=0.35 y  $P(A\cap B)=0.15$ .
  - a) La probabilidad de que le guste al menos uno de los dos géneros musicales (pop o techno) se puede calcular utilizando el principio de inclusión-exclusión:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.45 + 0.35 - 0.15 = 0.65.$$

b) La probabilidad pedida es:  $P(\bar{A} \cap B)$  donde  $\bar{A}$  es el complementario de A. Así:

$$P(\bar{A} \cap B) = P(B) - P(A \cap B) = 0.35 - 0.15 = 0.20.$$

9. a) Dado que la desviación típica poblacional es conocida, el intervalo de confianza viene dado por la expresión

$$I_{95\%} = \left(\bar{x} - z_{0,025} \cdot \frac{\sigma}{\sqrt{n}}; \bar{x} + z_{0,025} \cdot \frac{\sigma}{\sqrt{n}}\right),$$

luego

$$I_{95\%} = \left(120 - 1.96 \cdot \frac{8}{\sqrt{25}}; 120 + 1.96 \cdot \frac{8}{\sqrt{25}}\right) \simeq (116.86; 123.14).$$

b) El error máximo en la estimación de la media viene dado por:

$$z_{lpha/2} \cdot rac{\sigma}{\sqrt{n}} < {\sf Error} \ {\sf máximo}$$

Para un nivel de confianza del  $90\,\%$ , el valor crítico es aproximadamente  $z_{0,05}\simeq 1{,}645.$  Resolviendo para n:

$$n > \left(\frac{8 \cdot 1,645}{1}\right)^2 = 173,19.$$

Así, el tamaño mínimo de la muestra será de 174 plantas acuáticas.

- 10. Definimos los sucesos D='un alevín mide más de 35 mm' y  $\bar{D}$  es el complementario de D.
  - a) La probabilidad pedida es:

$$P(D) = P(D \mid A) \cdot P(A) + P(D \mid B) \cdot P(B) + P(D \mid C) \cdot P(C)$$
  
= 0.15 \cdot 0.35 + 0.30 \cdot 0.20 + 0.25 \cdot 0.45 = 0.225.

b) La probabilidad pedida es:

$$P(C \mid \bar{D}) = \frac{P(C) \cdot P(\bar{D} \mid C)}{P(\bar{D})} = \frac{0.45 \cdot (1 - 0.25)}{1 - 0.225} = 0.4355.$$