

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

EVALUACIÓN PARA EL ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

Curso 2022-2023

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

INSTRUCCIONES GENERALES Y CALIFICACIÓN

Después de leer atentamente todas las preguntas, el alumno deberá responder razonadamente a **cinco** preguntas cualesquiera a elegir entre las diez que se le proponen.

Cada ejercicio se valorará sobre 2 puntos, y si consta de dos apartados, cada apartado se valorará sobre 1 punto. **DURACIÓN:** 90 minutos.

A.1. (2 puntos) Se consideran las matrices A y B dadas por

$$A = \left(\begin{array}{cc} 5 & 2\\ 2 & 1 \end{array}\right) \qquad B = \left(\begin{array}{cc} 1 & 0 & 1\\ 0 & 1 & 1 \end{array}\right)$$

- a) Determine la matriz X tal que, $A \cdot X = B$.
- b) Calcule $B \cdot B^t \cdot A^{-1}$, donde B^t denota la matriz transpuesta de B y A^{-1} la matriz inversa de A.
- A.2. (2 puntos) Una familia acaba de comprar una parcela y desea construir en ella una piscina rectangular. Tiene que decidir el largo y el ancho de la piscina sabiendo que el largo no puede ser más de 2 veces el ancho, y que 3 veces el ancho no puede sobrepasar a 2 veces el largo. Además, el perímetro debe tener 30 metros como máximo y quieren que la piscina tenga al menos 4 metros de ancho. ¿Qué dimensiones deben elegir si quieren una piscina lo más larga posible?
- A.3. (2 puntos) Dada la siguiente función real de variable real

$$f(x) = \begin{cases} ax^2 e^{x-3} & si \quad x \le 3\\ \frac{x^2 - x - 6}{x^2 - 3x} & si \quad x > 3 \end{cases}$$

- a) Obtenga el valor del parámetro real a para que la función sea continua en x=3.
- b) Para a=1, determine los máximos y mínimos relativos de f(x) en el intervalo $(-\infty,1)$.
- A.4. (2 puntos) Sean dos sucesos A y B tales que P(A)=0,57, P(B)=0,46 y $P(A\cap B)=0,28$. Calcule las siguientes probabilidades:
 - a) $P(A \cup B)$.
 - b) $P(B|\bar{A})$ siendo \bar{A} el suceso complementario de A.
- A.5. (2 puntos) La longitud en metros de un coche se puede aproximar por una variable aleatoria normal de media μ y desviación típica σ =0,2 metros.
 - a) Determine el tamaño mínimo que debe tener una muestra aleatoria simple para que el error máximo cometido en la estimación de μ sea menor de 4 centímetros con un nivel de confianza del $95\,\%$.
 - b) Suponga que μ =4 metros. Calcule la probabilidad de que al tomar una muestra aleatoria simple de tamaño n =36 coches, la longitud media, \bar{X} , sea mayor de 4,04 metros.

В

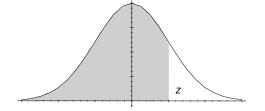
B.1. (2 puntos) Se considera el sistema de ecuaciones lineales dependiente del parámetro $a \in \mathbb{R}$:

$$\left. \begin{array}{rcl}
 2ax + y + 2z & = & 2 \\
 x - az & = & 0 \\
 3x - y - z & = & 2a
 \end{array} \right\}$$

- a) Discuta el sistema para los diferentes valores de a.
- b) Resuelva el sistema de ecuaciones para a=1.
- B.2. (2 puntos) Se considera la siguiente función real de variable real dependiente de un parámetro real a:

$$f(x) = -x^3 + 4ax^2 - 17x + 5a$$

- a) Calcule el valor de a para que la pendiente de la recta tangente a la gráfica de la función f(x) en el punto de abscisa x=1 sea la misma que la pendiente de la recta $g(x)=\sqrt{3}-4x$.
- b) Para a=0, obtenga el área de la región acotada del plano delimitada por la gráfica de la función f(x), el eje de abscisas y las rectas x=0 y x=2.
- B.3 (2 puntos) Se considera la siguiente función real de variable real:


$$f(x) = \frac{x^2 + 4x + 3}{x}$$

- a) Determine los intervalos de crecimiento y decrecimiento de la función.
- b) Determine las asíntotas de la función.
- B.4. (2 puntos) Un restaurante de comida rápida sirve el $40\,\%$ de los menús para consumir en el local, el $35\,\%$ es transportado por motoristas a domicilio (*delivery*) y el resto de menús son recogidos por los clientes en el local (*take-away*). El restaurante tiene un menú vegetariano que es consumido por el $8\,\%$ de los clientes en el local, el $5\,\%$ de los pedidos a domicilio y el $12\,\%$ de los recogidos en el local por los propios clientes. Eligiendo un menú al azar, calcule la probabilidad de que:
 - a) Sea vegetariano.
 - b) Haya sido llevado a domicilio por un motorista, sabiendo que es vegetariano.
- B.5. (2 puntos) La vida media de una persona medida en semanas se puede aproximar por una variable aleatoria normal de media μ y desviación típica $\sigma=300$ semanas.
 - a) Se toma una muestra aleatoria simple de 20 personas ya fallecidas, obteniéndose una media muestral de 4020 semanas. Determine un intervalo de confianza al $99\,\%$ para μ .
 - b) ¿Qué tamaño de muestra sería necesario para que la longitud del intervalo anterior no sobrepase las 100 semanas?

Matemáticas Aplicadas a las Ciencias Sociales

ÁREAS BAJO LA DISTRIBUCIÓN DE PROBABILIDAD NORMAL ESTÁNDAR

Los valores en la tabla representan el área bajo la curva normal hasta un valor positivo de z.

Z	,00	,01	,02	,03	,04	,05	,06	,07	,08	,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7703	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9954	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986

MATEMATICAS APLICADAS A LAS CIENCIAS SOCIALES II

CRITERIOS ESPECÍFICOS DE CORRECCIÓN Y CALIFICACIÓN

ATENCIÓN: La calificación debe hacerse en múltiplos de 0,25 puntos

OPCIÓN A

01 0101111	
Ejercicio 1. (Puntuación máxima: 2 puntos)	
Apartado (a): 1 punto.	
Resolución de la ecuación matricial	0,25 puntos.
Cálculo de la matriz inversa	0,50 puntos.
Obtención de la matriz X	0,25 puntos.
Apartado (b): 1 punto.	
Expresión de la matriz transpuesta	0,25 puntos.
Cálculo correcto de los productos de matrices	0,75 puntos.
Ejercicio 2. (Puntuación máxima: 2 puntos)	
Determinación de la función objetivo	0,25 puntos.
Determinación correcta de las restricciones	0,50 puntos.
Representación de la región factible y sus vértices	0,75 puntos.
Obtención de la solución (dimensiones de la piscina)	0,50 puntos.
Ejercicio 3. (Puntuación máxima: 2 puntos)	
Apartado (a): 1 punto.	
Estudio correcto de la continuidad en $x = 3$	0,50 puntos.
Obtención correcta del valor del parámetro a	0,50 puntos.
Apartado (b): 1 punto.	
Cálculo de la derivada y de los valores que la anulan	0,50 puntos.
Determinación de la abscisa del máximo y del mínimo	0,50 puntos.
Ejercicio 4. (Puntuación máxima: 2 puntos)	
Apartado (a): 1 punto.	
Planteamiento correcto de la probabilidad	0,50 puntos.
Cálculo correcto de la probabilidad	0,50 puntos.
Apartado (b): 1 punto.	
Planteamiento correcto de la probabilidad	=
Cálculo correcto de la probabilidad	0,50 puntos.
Ejercicio 5. (Puntuación máxima: 2 puntos)	
Apartado (a): 1 punto.	
Cálculo correcto de $z_{\alpha/2}$	0,25 puntos.
Expresión correcta de la fórmula del error	0,25 puntos.
Determinación correcta del tamaño de la muestra	0,50 puntos.
Apartado (b): 1 punto.	
Expresión correcta de la distribución de la media muestral	0,25 puntos.
Planteamiento correcto de la probabilidad	0,25 puntos.
Tipificación correcta de la variable	0,25 puntos.
Determinación correcta de la probabilidad	0,25 puntos.

NOTA: La resolución de los ejercicios por cualquier otro procedimiento correcto, diferente al propuesto por los coordinadores, ha de valorarse con los criterios convenientemente adaptados.

OPCION B

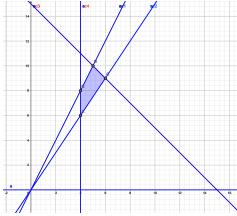
Ejercicio 1. (Puntuación máxima: 2 puntos)							
Apartado (a): 1 punto.							
Cálculo correcto de los valores críticos	0,50 puntos.						
Discusión correcta	0,50 puntos.						
Apartado (b): 1 punto.							
Obtención de la solución correcta del sistema	1 punto.						
Ejercicio 2. (Puntuación máxima: 2 puntos)							
Apartado (a): 1 punto.							
Cálculo correcto de la derivada	0,25 puntos.						
Planteamiento correcto de la ecuación	0,50 puntos.						
Obtención del valor del parámetro a	0,25 puntos.						
Apartado (b): 1 punto.							
Cálculo correcto de la primitiva	0,25 puntos.						
Planteamiento correcto del área	0,25 puntos.						
Obtención de área pedida	0,50 puntos.						
Ejercicio 3. (Puntuación máxima: 2 puntos)							
Apartado (a): 1 punto.							
Cálculo correcto de la derivada	0,25 puntos.						
Determinación correcta de los intervalos	0,75 puntos.						
Apartado (b): 1 punto.							
Obtención de la asíntota vertical	0,25 puntos.						
Estudio de asíntota horizontal	0,25 puntos.						
Obtención de la asíntota oblicua	0,50 puntos.						
Ejercicio 4. (Puntuación máxima: 2 puntos)							
Apartado (a): 1 punto.							
Planteamiento correcto de la probabilidad	0,50 puntos.						
Cálculo correcto de la probabilidad	0,50 puntos.						
Apartado (b): 1 punto.							
Planteamiento correcto de la probabilidad	0,50 puntos.						
Cálculo correcto de la probabilidad	0,50 puntos.						
Ejercicio 5. (Puntuación máxima: 2 puntos)							
Apartado (a): 1 punto.							
Cálculo correcto de $z_{\alpha/2}$	0,25 puntos.						
Cálculo correcto del error	0,25 puntos.						
Determinación correcta del intervalo de confianza	_						
Apartado (b): 1 punto.							
Deducción del error	0,25 puntos.						
Planteamiento correcto de la fórmula del error	-						
Determinación correcta del tamaño de la muestra	-						

NOTA: La resolución de los ejercicios por cualquier otro procedimiento correcto, diferente al propuesto por los coordinadores, ha de valorarse con los criterios convenientemente adaptados.

SOLUCIONES

A. 1. a)

$$X = A^{-1} \cdot B = \begin{pmatrix} 1 & -2 \\ -2 & 5 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -2 & -1 \\ -2 & 5 & 3 \end{pmatrix}$$


b)

$$(B \cdot B^t) \cdot A^{-1} = \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 1 \end{array}\right) \left(\begin{array}{ccc} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{array}\right) \left(\begin{array}{ccc} 1 & -2 \\ -2 & 5 \end{array}\right) = \left(\begin{array}{ccc} 2 & 1 \\ 1 & 2 \end{array}\right) \left(\begin{array}{ccc} 1 & -2 \\ -2 & 5 \end{array}\right) = \left(\begin{array}{ccc} 0 & 1 \\ -3 & 8 \end{array}\right)$$

A.2. Sea x: ancho de la piscina (en metros), e y: largo de la piscina (en metros). Entonces:

$$S = \{2x - y \ge 0, 3x - 2y \le 0, 2x + 2y \le 30, x \ge 4, y \ge 0\},\$$

con vértices A = (4,6), B = (4,8), C = (6,9) y D = (5,10).

La función a maximizar es B(x,y) = y. Evaluamos en los vértices de la región factible obtenidos:

- B(4,6) = 6
- B(4,8) = 8
- B(6,9) = 9
- $B(5,10) = 10 \rightarrow \mathsf{Máximo}$

La piscina debe tener 5 metros de ancho y 10 metros de largo.

A.3. *a*)

$$\lim_{x \to 3^{-}} (ax^{2}e^{x-3}) = 9a = f(3), \qquad \lim_{x \to 3^{+}} \left(\frac{x^{2} - x - 6}{x^{2} - 3x}\right) = \lim_{x \to 3^{+}} \left(\frac{x + 2}{x}\right) = \frac{5}{3}$$

La función será continua en x=3 si $9a=5/3 \Leftrightarrow a=5/27$.

b) En $(-\infty, 1)$ con a = 1, $f(x) = x^2 e^{x-3}$

$$f'(x) = (2x + x^2)e^{x-3}$$
; $f'(x) = 0 \Leftrightarrow x = 0$ o $x = -2$

En $(-\infty,1)$ la función f(x) alcanza un máximo relativo en el punto de abscisa x=-2 y un mínimo relativo en el punto de abscisa x=0.

A.4. a) La probabilidad pedida es:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.57 + 0.46 - 0.28 = 0.75.$$

b) La probabilidad pedida es:

$$P(B \mid \bar{A}) = \frac{P(\bar{A} \cap B)}{P(\bar{A})} = \frac{P(B) - P(A \cap B)}{1 - P(A)} = \frac{0.46 - 0.28}{1 - 0.57} = 0.4186.$$

A.5. a) Se tiene $E < 0,04, \sigma = 0,2$ y $z_{\alpha/2} = 1,96$

$$E = z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \Rightarrow 0,04 > 1,96 \frac{0,2}{\sqrt{n}} \Rightarrow n > 96,04$$

Luego el tamaño mínimo de la muestra debe ser de n=97 coches.

b) La variable aleatoria \bar{X} sigue una distribución $N(4;0,2/\sqrt{36})$

$$P(\bar{X} > 4,04) = P\left(Z > \frac{4,04-4}{0,2/\sqrt{36}}\right) = P(Z > 1,2) = 1-0,8849 = 0,1151$$

B.1. a) La matriz del sistema es:

$$A = \left(\begin{array}{ccc} 2a & 1 & 2\\ 1 & 0 & -a\\ 3 & -1 & -1 \end{array}\right)$$

Cuyo determinante es $|A| = -2a^2 - 3a - 1$.

Así, $-2a^2 - 3a - 1 = 0 \Rightarrow a = -1, a = -1/2.$

Por lo tanto:

- Si $a \neq -1$, $a \neq -1/2$, rg(A|B) = 3, rg(A|B) = 3. SISTEMA COMPATIBLE DETERMINADO.
- Si a=-1, rg(A)=2, rg(A|B)=2. La segunda ecuación es la tercera más la primera. SISTEMA COMPATIBLE INDETERMINADO.
- Si a = -1/2, rg(a) = 2, rg(A|B) = 3. SISTEMA INCOMPATIBLE.
- b) Para a=1 el sistema es compatible determinado. Resulta:

$$\left. \begin{array}{rrr}
 2x + y + 2z & = 2 \\
 x - z & = 0 \\
 3x - y - z & = 2
 \end{array} \right\}$$

Aplicando por ejemplo el método de Cramer obtenemos que la solución es:

$$det(A) = -6, x = \frac{2}{3}, y = \frac{-2}{3}, z = \frac{2}{3}$$

B.2. a) $g(x) = \sqrt{3} - 4x$ es una recta de pendiente m = -4

Ecuación de la recta tangente a la gráfica en x_0 : $y-y_0=f'(x_0)(x-x_0)$

$$f'(x) = -3x^{2} + 8ax - 17$$

$$f'(1) = 8a - 20$$

$$8a - 20 = -4$$

$$a = 2$$

b) Para a=0,

$$f(x) = 0 \Leftrightarrow x = 0, \qquad f(x) < 0 \quad \forall \quad x \in (0, 2)$$

El área pedida es:

$$\left| \int_0^2 \left(-x^3 - 17x \right) dx \right| = \left| -\frac{x^4}{4} - 17\frac{x^2}{2} \right|_0^2 = \left| \frac{-16}{4} - \frac{17}{2} 4 \right| = \left| -38 \right| = 38u^2$$

B.3. a) La función f(x) no está definida en x = 0.

$$f'(x) = \frac{x^2 - 3}{x^2}$$

$$f'(x) = 0 \Leftrightarrow x^2 - 3 = 0 \Leftrightarrow x = \pm \sqrt{3}$$

En $x \in (-\infty, -\sqrt{3}), (\sqrt{3}, +\infty)$ f'(x) > 0 f'(x) > 0 f'(x) = 0 f'(x) = 0

En $x \in (-\sqrt{3}, 0), (0, \sqrt{3})$ f'(x) < 0 y f(x) es decreciente.

b) Asíntotas verticales:

$$\lim_{x \to 0^+} f(x) = +\infty \qquad \lim_{x \to 0^-} f(x) = -\infty$$

Por tanto, tiene asíntota vertical en x=0 .

Asíntotas horizontales:

$$\lim_{x \to +\infty} f(x) = +\infty \qquad \lim_{x \to -\infty} f(x) = -\infty$$

La función f(x) no tiene asíntotas horizontales.

Asíntotas oblicuas: y = mx + n

$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \left(\frac{x^2 + 4x + 3}{x^2} \right) = 1$$

$$\lim_{x \to \pm \infty} (f(x) - mx) = \lim_{x \to \pm \infty} \left(\frac{4x + 3}{x} \right) = 4$$

Entonces, la función f(x) tiene asíntota oblicua en y = 4 + x.

B.4. Definimos los sucesos L= 'consumido en el local', D= 'delivery', T= 'take-away' y V= 'vegetariano'.

a) La probabilidad pedida es:

$$P(V) = P(V \mid L)P(L) + P(V \mid D)P(D) + P(V \mid T)P(T)$$

= 0.08 \cdot 0.4 + 0.05 \cdot 0.35 + 0.12 \cdot 0.25 = 0.0795.

b) La probabilidad pedida es:

$$P(D \mid V) = \frac{P(V \mid D)P(D)}{P(V)} = \frac{0.05 \cdot 0.35}{0.0795} = 0.22.$$

- B.5. a) $IC_{99\,\%}(\mu)=\bar{x}\pm z_{\alpha/2}\frac{\sigma}{\sqrt{n}}=4020\pm 2,575\cdot 300/\sqrt{20}=(3847,2637;4192,7263)$ b) Se tiene que L=100 y $z_{\alpha/2}=2,575$

$$L = 2 \cdot z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \Longleftrightarrow 100 < 2 \cdot 2,575 \frac{300}{\sqrt{n}} \Longleftrightarrow n > 238,70.$$

La muestra debe ser de al menos 239 personas.