

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

EVALUACIÓN PARA EL ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

Curso 2019-2020

de Madrid | materia: matemáticas aplicadas a las ciencias sociales II

INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

Después de leer atentamente el examen, responda razonadamente a <u>cinco</u> preguntas cualesquiera a elegir entre las diez que se proponen.

TIEMPO Y CALIFICACIÓN: 90 minutos. Cada pregunta se calificará sobre 2 puntos.

A.1. (2 puntos)

Considere la matriz

$$A = \left(\begin{array}{ccc} 1 & 2 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{array}\right)$$

- a) Calcule A^2 y A^{10} .
- b) Calcule $(AA 3I)^{-1}$, donde I es la matriz identidad de orden 3.

A.2. (2 puntos)

Considere la región del plano S definida por

$$x - y \ge 0, \qquad y + 2x \le 8, \qquad 0 \le y \le 2$$

- a) Represente la región S y calcule las coordenadas de sus vértices.
- b) Obtenga el valor máximo y el valor mínimo de la función f(x,y)=4x-y en la región S, indicando los puntos en los cuales se alcanzan dichos valores.

A.3. (2 puntos)

Considere la función real de variable real

$$f(x) = 2x^3 + ax^2 - 1$$

- a) Determine el valor de del parámetro real a para que el punto de abscisa x=-1 de la función f(x) sea un máximo relativo.
- b) Calcule los intervalos de crecimiento y decrecimiento de la función f(x) para a=1.

A.4. (2 puntos)

En un festival de circo de verano el $70\,\%$ de los espectáculos son gratuitos y el resto de pago. El $60\,\%$ de los espectáculos gratuitos se realizan en las calles, mientras que de los de pago sólo se realizan en la calle el $20\,\%$. Si un visitante del festival, elegido al azar, decide ir a un espectáculo, calcule la probabilidad de que:

- a) El espectáculo sea gratuito y no se realice en la calle.
- b) El espectáculo se realice en la calle.

A.5. (2 puntos)

El salario medio bruto mensual en España en 2019 se puede aproximar por una distribución normal con $\sigma=900$ euros.

- a) Determine el tamaño mínimo que debe tener una muestra aleatoria simple para que el error máximo cometido en la estimación de μ por la media muestral, \overline{X} , sea a lo sumo de 200 euros, con un nivel de confianza del $95\,\%$.
- b) Suponga que $\mu=1889$ euros. Calcule la probabilidad de que al tomar una muestra aleatoria simple de 64 individuos, la media muestral, \overline{X} , sea mayor que 1900 euros.

B.1. (2 puntos)

Considere el sistema de ecuaciones lineales dependiente del parámetro $a \in \mathbb{R}$:

$$3x + 2y + z = 2a
2x + ay + 2z = 3
-x - y - z = 2$$

- a) Discuta el sistema para los diferentes valores de a.
- b) Resuelva el sistema para a=0.

B.2. (2 puntos)

Dada la función real de variable real:

$$f(x) = ax^3 - x^2 - x + a$$

- a) Determine el valor del parámetro real a para que haya un punto de inflexión en x=1.
- b) Para a=2, calcule el área del recinto acotado por la gráfica de f(x), el eje de abscisas y las rectas x=0 y x=1.

B.3. (2 puntos)

Considere la función real de variable real definida por

$$f(x) = \begin{cases} \frac{x^2 - 4x + 3}{x^2 - 1} & \text{si } x > 1\\ -x^2 & \text{si } x \le 1 \end{cases}$$

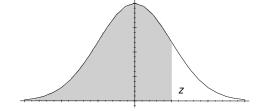
- a) Calcule $\lim_{x \to 1} f(x)$. ¿Es la función f(x) continua en todo su dominio?.
- b) Calcule las asíntotas de f(x).

B.4. (2 puntos)

En un kiosco de prensa del aeropuerto de Madrid el $40\,\%$ de las ventas son periódicos y el resto revistas. Un $90\,\%$ de las publicaciones están en castellano. Además se sabe que un $8\,\%$ del total de las publicaciones son revistas en otro idioma. Calcule la probabilidad de que una publicación elegida al azar:

- a) Sea un periódico, dado que está publicado en otro idioma distinto del castellano.
- b) Sea un periódico o esté publicado en otro idioma distinto del castellano.

B.5. (2 puntos)


Se estima que el coste medio anual de la cesta de la compra de una familia tipo se puede aproximar por una distribución normal de media μ y desviación típica $\sigma=500$ euros.

- a) Se ha analizado el consumo de 100 familias tipo, obteniéndose un coste medio estimado de 5100 euros anuales. Calcule un intervalo de confianza al $90\,\%$ para la media μ .
- b) A partir de una muestra de 36 familias tipo, se ha obtenido un intervalo de confianza para μ con un error de estimación de 160 euros. Determine el nivel de confianza utilizado para construir el intervalo.

Matemáticas Aplicadas a las Ciencias Sociales

ÁREAS BAJO LA DISTRIBUCIÓN DE PROBABILIDAD NORMAL ESTÁNDAR

Los valores en la tabla representan el área bajo la curva normal hasta un valor positivo de z.

z	,00	,01	,02	,03	,04	,05	,06	,07	,08	,09
-	,00	,01	,02	,03	,,,,,	,03	,00	,07	,00	,03
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7703	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9954	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

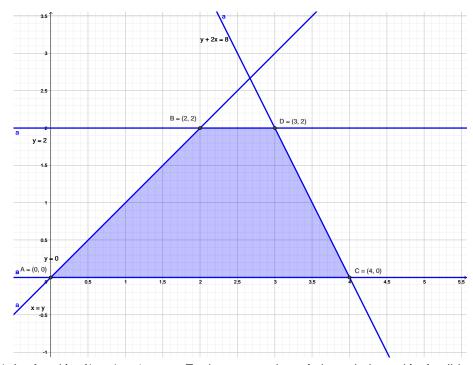
CRITERIOS ESPECÍFICOS DE CORRECCIÓN Y CALIFICACIÓN

ATENCIÓN: La calificación debe hacerse en múltiplos de 0,25 puntos

Ejercicio A.1. (Puntuación máxima: 2 puntos)
Apartado (a): 1 punto.
Cálculo correcto de la matriz A ²
Cálculo correcto de la matriz A ¹⁰ 0,50 puntos.
Apartado (b): 1 punto.
Determinación correcta de la matriz AA – 3I0,25 puntos.
Cálculo correcto de la inversa
Ejercicio A.2. (Puntuación máxima: 2 puntos)
Apartado (a): 1 punto.
Representación correcta de la región factible
Obtención correcta de los vértices
Apartado (b): 1 punto.
Encontrar el punto de valor máximo (abscisa y ordenada)0,25 puntos
Determinar máximo de la función
Encontrar el punto de valor mínimo (abscisa y ordenada)
Determinar mínimo de la función
Ejercicio A.3. (Puntuación máxima: 2 puntos)
Apartado (a): 1 punto.
Cálculo correcto de la derivada
Planteamiento correcto
Obtención correcta del parámetro
Apartado (b): 1 punto.
Cálculo correcto de la derivada
Determinación correcta de los intervalos
Ejercicio A.4. (Puntuación máxima: 2 puntos)
Apartado (a): 1 punto.
Planteamiento correcto de la probabilidad0,50 puntos.
Cálculo correcto de la probabilidad
Apartado (b): 1 punto.
Planteamiento correcto de la probabilidad0,50 puntos.
Cálculo correcto de la probabilidad
Ejercicio A.5. (Puntuación máxima: 2 puntos)
Apartado (a): 1 punto.
Cálculo correcto de $z_{\alpha/2}$
Planteamiento correcto
Obtención correcta del tamaño mínimo
Apartado (b): 1 punto.
Expresión correcta de la distribución de la media muestral
Tipificación correcta de la variable
Determinación correcta de la probabilidad

SOLUCIONES REPERTORIO 4

A.1. a)


$$A^2 = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{array}\right)$$

$$A^{10} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^{10} \end{array}\right)$$

b)

$$(AA - 3I)^{-1} = \begin{pmatrix} -\frac{1}{2} & 0 & 0\\ 0 & -\frac{1}{2} & 0\\ 0 & 0 & 1 \end{pmatrix}$$

A.2. a) Las coordenadas de los vértices son A = (0,0), B = (2,2), C = (4,0) y D = (3,2).

- b) La función f(x, y) = 4x y. Evaluamos en los vértices de la región factible obtenidos:
 - $f(0,0) = 0 \rightarrow M$ ínimo
 - f(2,2) = 6
 - $f(4,0) = 16 \rightarrow Máximo$
 - f(3,2) = 10

A.3. a)

$$f(x) = 2x^3 + ax^2 - 1$$

$$f'(x) = 6x^2 + 2ax = 0 \longrightarrow x = 0; x = -\frac{a}{3} \longrightarrow a = 3$$

$$f''(x) = 12x + 2a$$
, tomando $a = 3 \longrightarrow f''(-1) = -6$ máximo

b)

$$f'(x) = 6x^2 + 2x \longrightarrow f'(x) = 0 \longrightarrow x = 0; x = -1/3$$

$$x$$
 $(-\infty, -1/3)$ $(-1/3, 0)$ $(0, \infty)$ $f'(x)$ + - + $f(x)$ creciente decreciente creciente

A.4 Sean los sucesos G: Gratuito, G: No gratuito, C: Calle, C: No en la calle

$$P(G) = 0'7; P(\overline{G}) = 0'3; P(C|G) = 0'6; P(C|P) = 0'2$$

a)
$$P(G \cap \overline{C}) = P(\overline{C}|G)P(G) = 0'4 * 0'7 = 0'28$$

b)
$$P(C) = P(C|G)P(G) + P(C|\overline{G})P(\overline{G}) = 0'6 * 0'7 + 0'2 * 0'3 = 0'48$$

$$z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < 200 \Rightarrow \sqrt{n} > 1'96 \frac{900}{200} = 8'82$$

 $n > 77'79 \Longrightarrow n \ge 78$

b)
$$P(\overline{X} > 1900) = P\left(\frac{\overline{X} - 1889}{900/\sqrt{64}} > \frac{1900 - 1889}{900/\sqrt{64}}\right)$$

$$P(Z > 0'098) = 1 - 0'54 = 0'46$$

SOLUCIONES REPERTORIO 4

B.1. a) Las matrices del sistema son

$$A = \begin{pmatrix} 3 & 2 & 1 \\ 2 & a & 2 \\ -1 & -1 & -1 \end{pmatrix} \quad y \overline{A} = \begin{pmatrix} 3 & 2 & 1 & 2a \\ 2 & a & 2 & 3 \\ -1 & -1 & -1 & 2 \end{pmatrix}$$

El determinante de A es |A| = -2a + 4 que será igual a 0 si a = 2.

Entonces

$$a=2$$
 $rg(A)=2$ $rg(\overline{A})=3$ \Rightarrow Sistema incompatible $a \neq 2$ $rg(A)=3$ $rg(\overline{A})=3$ \Rightarrow Sistema compatible determinado

b) Para a=1

$$\begin{pmatrix} 3 & 2 & 1 & 2 \\ 2 & 1 & 2 & 3 \\ -1 & -1 & -1 & 2 \end{pmatrix} \longrightarrow \begin{matrix} -F_3 \\ F_2 \\ F_1 \end{matrix} \begin{pmatrix} 1 & 1 & 1 & -2 \\ 2 & 1 & 2 & 3 \\ 3 & 2 & 1 & 2 \end{pmatrix} \longrightarrow \begin{matrix} F_1 \\ F_2 - 2F_1 \\ F_3 - 3F_1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & -2 \\ 0 & -1 & 0 & 7 \\ 0 & -1 & -2 & 8 \end{pmatrix} \longrightarrow \begin{matrix} F_1 \\ F_2 - 2F_2 \\ F_3 - F_2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & -2 \\ 0 & -1 & 0 & 7 \\ 0 & 0 & -2 & 1 \end{pmatrix}$$

Entonces la solución es z = -1/2; y = -7; x = 11/2

B.2. a)

$$f(x) = ax^{3} - x^{2} - x + a$$

$$f'(x) = 3ax^{2} - 2x - 1$$

$$f''(x) = 6ax - 2$$
Como $f''(1) = 6a - 2 = 0 \longrightarrow a = 1/3$

b) Para a=2

$$f(x) = 2x^3 - x^2 - x + 2$$

Como x = -1 es una raíz, f(x) = (x + 1) * g(x), con $g(x) = 2x^2 - 3x + 2$ y g(x) no tiene raíces reales, por lo que f(x) sólo cambia de signo en x = -1,

Como
$$f(x) \ge 0$$
 para todo $x \in (0, 1)$

$$\int_{0}^{1} (2x^{3} - x^{2} - x + 2) dx = \frac{x^{4}}{2} - \frac{x^{3}}{3} - \frac{x^{2}}{2} + 2x \bigg]_{0}^{1} = \frac{5}{3}$$

B.3. a) Como

$$\frac{x^2 - 4x + 3}{x^2 - 1} = \frac{(x - 3)(x - 1)}{(x - 1)(x + 1)} = \frac{x - 3}{x + 1}$$

la función es

$$f(x) = \begin{cases} \frac{x-3}{x+1} & \text{si } x > 1\\ -x^2 & \text{si } x \le 1 \end{cases}$$

entonces

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{x - 3}{x + 1} = -1$$

У

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (-x^{2}) = -1$$

Entonces f(x) es continua en x = 1 y es continua en todo x.

b) No tiene asíntotas verticales ni oblicuas. Asíntotas horizontales:

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x - 3}{x + 1} = 1$$
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (-x^2) = -\infty$$

Tiene una asíntota horizontal en y = 1 cuando $x \to \infty$

B.4.Definimos los sucesos P: Periódico, P: Revista, C: Castellano C: Otro idioma

$$P(P)=0'4; P(\overline{P})=0'6; P(C)=0'9; P(\overline{C})=0'1; P(\overline{P}\cap \overline{C})=0'08$$
 a)
$$P(P|\overline{C})=\frac{P(\overline{C}\cap P)}{P(\overline{C})}$$

Como

$$P(\overline{C}) = P(\overline{C} \cap \overline{P}) + P(\overline{C} \cap P) = 0'1$$

$$P(\overline{C} \cap P) = 0'1 - P(\overline{C} \cap \overline{P}) = 0'1 - 0'08 = 0'02$$

entonces

$$P(P|\overline{C}) = \frac{P(\overline{C} \cap P)}{P(\overline{C})} = \frac{0'02}{0'1} = 0'2$$
b)
$$P(P \cup \overline{C}) = P(P) + P(\overline{C}) - P(\overline{C} \cap P)$$
Como
$$P(\overline{C}) = P(\overline{C} \cap P) + P(\overline{C} \cap \overline{P}) = 0'1$$

$$P(\overline{C} \cap P) = 0'1 - P(\overline{C} \cap \overline{P}) = 0'02$$

$$P(P \cup \overline{C}) = P(P) + P(\overline{C}) - P(\overline{C} \cap P) = 0'4 + 0'1 - 0'02 = 0'48$$

B.5. a) La fórmula para un intervalo de confianza al 90 % es

$$IC_{0'9}(\mu) = (\overline{x} \pm z_{0'05} \frac{\sigma}{\sqrt{n}})$$

como $z_{0'05} = 1'64$, con los datos del problema se obtiene

$$IC_{0'9}(\mu) = \left(5100 - 1'64 \frac{500}{\sqrt{100}}, 5100 + 1'64 \frac{500}{\sqrt{100}}\right) = (5018, 5182)$$
 b)
$$Z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = Error$$

$$Z_{\alpha/2} \frac{500}{\sqrt{36}} = 160 \Longrightarrow Z_{\alpha/2} = 1'92$$

El nivel de confianza en el intervalo es 1 $-\alpha$ = 0'945 o del 94'5%

Ejercicio B.1. (Puntuación máxima: 2 puntos)					
Apartado (a): 1 punto.					
Cálculo correcto de los valores críticos					
Discusión correcta					
Apartado (b): 1 punto.					
Solución correcta del sistema					
Ejercicio B.2. (Puntuación máxima: 2 puntos)					
Apartado (a): 1 punto.					
Expresión correcta de la segunda derivada					
Planteamiento correcto					
Obtención del valor correcto del parámetro					
Apartado (b): 1 punto.					
Planteamiento correcto					
Cálculo correcto de la integral indefinida					
Cálculo correcto del área					
Ejercicio B.3. (Puntuación máxima: 2 puntos)					
Apartado (a): 1 punto.					
Planteamiento correcto de la condición de continuidad en $x \neq 1$ 0,25 puntos.					
Planteamiento correcto de la condición de continuidad en $x = 1$ 0,25 puntos					
Cálculo correcto de los límites laterales					
Apartado (b): 1 punto.					
Discusión correcta de la no existencia de asíntotas verticales/oblicuas0,50 puntos					
Obtención correcta de la asíntota horizontal					
Ejercicio B.4. (Puntuación máxima: 2 puntos)					
Apartado (a): 1 punto.					
Planteamiento correcto de la probabilidad					
Cálculo correcto de la probabilidad					
Apartado (b): 1 punto.					
Planteamiento correcto de la probabilidad					
Cálculo correcto de la probabilidad					
Ejercicio B.5. (Puntuación máxima: 2 puntos)					
Apartado (a): 1 punto.					
Cálculo correcto de $z_{\alpha/2}$					
Expresión correcta de la fórmula del intervalo de confianza0,25 puntos.					
Determinación correcta del intervalo					
Apartado (b): 1 punto.					
Expresión correcta de la fórmula del error					
Cálculo correcto de $z_{\alpha/2}$					
Obtención correcta del nivel de confianza					
· •					