Geometría del espacio. Rectas y Planos.

Ejercicio 1

Hallar el volumen del tetraedro que forman los planos:

$$\pi_1 \equiv y = 0$$
, $\pi_2 \equiv x - y = 0$, $\pi_3 \equiv z = 0$, $\pi_4 \equiv 3x + 2y + z = 15$

Ejercicio 2

Calcular la distancia entre las rectas:

$$r \equiv \begin{cases} x = 1 + \lambda \\ y = 1 - 2\lambda \\ z = 5 - 7\lambda \end{cases} \qquad y \qquad s \equiv \begin{cases} 2x - 3y + z = 0 \\ 3x - y + 1 = 0 \end{cases}$$

Ejercicio 3

- a. Hallar la ecuación de la recta que pasando por el punto (1,2,3) forme ángulos iguales con la parte positiva de los ejes coordenados.
- b. Hallar la ecuación del plano que contiene al punto (2,4,2) y a la recta del apartado anterior.

Ejercicio 4

Hallar las ecuaciones del plano simétrico del plano $\pi \equiv x - y + z = 1$ respecto del centro C(2,0,-2).

Ejercicio 5

Hallar la ecuación del plano que pasa por los puntos A(0,1,1) y B(1,0,-2) y es perpendicular al plano $\pi \equiv 2x - y + z + 1 = 0$.

Ejercicio 6

Sean A(2,1,0), B(3,4,0) y C(5,1,0) tres vértices de un tetraedro, el cuarto vértice D está sobre la recta r. Hallar las coordenadas de D para que el volumen del tetraedro valga 6.

$$r \equiv \begin{cases} x = 1 - t \\ y = 2 + t \\ z = 3 + t \end{cases}$$

Ejercicio 7

Hallar el punto simétrico de A(-2,1,3) respecto de la recta $r = \frac{x+1}{-3} = \frac{y+1}{2} = z-1$.

Ejercicio 8

Hallar la longitud de la proyección del vector \vec{v} , de origen el punto (2,3,4) y extremo (0,-3,1), sobre la recta r de ecuaciones: $r \equiv x - 1 = 2y + 2 = z - 1$.

Ejercicio 9

Calcular la ecuación de la recta que pasa por el punto P(5,-2,1) y es perpendicular a la recta

$$r \equiv \begin{cases} x = -\lambda \\ y = 3 \\ z = 1 + \lambda \end{cases}.$$

Ejercicio 10

Dada la recta de ecuación $r = \frac{x+2}{3} = \frac{y-1}{2} = \frac{z}{4}$, hallar la ecuación del plano que contiene a r y pasa por el punto A(0,-3,2).

Ejercicio 11

Dadas las rectas $r \equiv \frac{x+3}{3} = \frac{y-9}{-2} = \frac{z-8}{-2}$ y $s \equiv \frac{x-3}{-2} = \frac{y-2}{1} = \frac{z-1}{2}$, hallar la distancia entre ambas y las ecuaciones de la perpendicular común.

Ejercicio 12

Hállese el ángulo que forman la recta r y el plano π :

$$r \equiv -\sqrt{2}x = y + 1 = -\sqrt{2}z - \sqrt{8}$$
, $\pi \equiv y - 2\sqrt{2}z + 8 = 0$.

Eiercicio 13

Hállese la ecuación del plano que pasa por el punto P(-7,2,3), sabiendo que la proyección ortogonal del origen de coordenadas sobre dicho plano es el punto A(a,4,1).

Ejercicio 14

Dados los planos $\pi_1 \equiv 5x - y - z = 0$, $\pi_2 \equiv x + y - z = 0$ y el punto P(9,4,-1), determínese:

- a. La ecuación del plano que pasa por P y es perpendicular a ambos planos.
- b. El simétrico de P respecto de la recta intersección de los dos planos.

Ejercicio 15

Dado el plano de ecuación $\pi \equiv 2x - y + 3z = 5$, indicar la condiciones para que un vector de coordenadas (a,b,c) tenga la dirección de alguna recta contenida en el plano.

Ejercicio 16

Dada la recta $r \equiv x + 2 = 3y = -3z$, y el plano $\pi \equiv Ax + 5y - 4z = 0$.

- a. Hállese A, sabiendo que la recta y el plano son paralelos.
- b. Calcúlese la distancia entre la recta y el plano.
- c. Hállense las ecuaciones de la recta simétrica de r respecto del plano π .

Ejercicio 17

Calcular el volumen de un paralelepípedo, sabiendo que dos vértices opuestos son los puntos (1,4,3) y (2,2,6) y sus aristas son paralelas a los ejes de coordenadas.

Ejercicio 18

Hallar la ecuación de la recta r, que corta a las rectas $r_1 \equiv x = -y = \frac{z+1}{2}$, $r_2 \equiv x = y = z$, y es

paralela a la recta $s \equiv \begin{cases} x = 2 \\ z = -2y + 1 \end{cases}$.

Ejercicio 19

Sean $\pi = 2x + y - z = 2$, $r = \begin{cases} x - y + z = 3 \\ 2x + y = 1 \end{cases}$, hallar la ecuación del plano que pasa por P(1,2,1), es paralelo a la recta r y perpendicular al plano π .

Ejercicio 20

Determinar la ecuación del plano que contiene a la recta $r = \begin{cases} x-3y-z=5\\ 2x-y+3z=10 \end{cases}$ y al punto P(1,1,2).

Ejercicio 21

Calcular la distancia entre los planos $\pi_1 \equiv x + y - 2z = 0$ y $\pi_2 \equiv 2x + 2y - 4z + 10 = 0$

Ejercicio 22

Determinar la proyección ortogonal del punto P(0,1,2) sobre la recta $r = \frac{x+2}{2} = \frac{y-1}{2} = \frac{z+1}{3}$.

Ejercicio 23

Determinar las ecuaciones de la recta que contiene a la altura relativa al vértice A del tetraedro ABCD, siendo sus vértices: A(1,2,0), B(0,1,3), C(1,-1,1) y D(1,1,4). Hallar también el volumen del tetraedro.

Ejercicio 24

Calcular la ecuación de una recta que pase por el punto P(0,1,2), sea paralela al plano $\pi \equiv x - y + 2z = 1$ y corte a la recta $r \equiv \begin{cases} x = z - 1 \\ y = 2 \end{cases}$.

Ejercicio 25

Dados los planos $\pi_1 \equiv x - 2y + z + 3 = 0$ y $\pi_2 \equiv x - 2y + z - 4 = 0$ y el punto P(2,2,1), determinar si P está situado o no entre ambos planos.

<u>Ejercicio 26</u> Hallar la ecuación de la recta que pasa por el punto A(2,0,5), es paralela al plano $\pi \equiv x + 5y + z = 0$ y está contenida en el mismo plano que la recta $r \equiv x + 1 = y = \frac{z}{2}$.

Ejercicio 27

Determinar a y b para que los 3 planos siguientes pasen por una misma recta y hallar el simétrico del origen de coordenadas respecto a la recta común.

$$\pi_1 \equiv x + 2y - z = 1$$
, $\pi_2 \equiv 2x + y + az = 0$, $\pi_3 \equiv 3x + 3y - 2z = b$

Ejercicio 28

Dadas las rectas $r_1 \equiv \frac{x+2}{3} = \frac{y}{2} = \frac{z-1}{4}$, $r_2 \equiv x+1 = \frac{y}{3} = \frac{z}{2}$ y el punto A(-1,1,2), hállese la ecuación de la recta que pasa por A y corta a las dos rectas dadas.

Ejercicio 29

Sean los planos de ecuaciones $\pi_1 \equiv 2x + y + 2z - 3 = 0$, $\pi_2 \equiv x + my + z = 0$, Determínese msabiendo que el ángulo que forman, α , cumple la relación $tg\alpha = \sqrt{2}$.

Ejercicio 30

Dada la recta $r \equiv \frac{x-1}{2} = \frac{y+3}{3} = \frac{z+2}{-4}$, y el plano $\pi \equiv 2x+3y+z=0$, hállense las ecuaciones de una recta s que se apoya en r perpendicularmente y está contenida en el plano π .