MATRICES

1. Sean las matrices

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ -1 & 1 & 0 \end{pmatrix}$$
 y
$$B = \begin{pmatrix} 2 & 2 & 2 \\ 0 & 2 & 2 \\ 0 & 0 & 2 \end{pmatrix}$$
; obtener A^2 , B^2 , A^3 , B^3 , $AB - BA$ y $(A + B)(A - B)$.

- **2.** Obtener todas las matrices cuadradas de orden dos, tales que $\,A^2 = I_2\,.\,$
- **3.** Obtener todas las matrices cuadradas de orden dos, tales que $A \neq 0$ y $A^2 = 0$.
- **4.** Hallar todas las matrices que conmutan con $A = \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix}$.
- **5.** Si $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$, calcular A^n .
- **6.** Si $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$, calcular A^n .
- 7. Sea $A = \begin{pmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{pmatrix}$, obtener $A + A^t$, $A A^t$, A^2 y A^n .
- **8.** Encontrar las matrices X e Y que verifiquen:

$$\begin{cases} X - 2Y = \begin{pmatrix} 1 & -1 \\ 7 & 2 \end{pmatrix} \\ 2X + Y = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix} \end{cases}$$

9. Calcular la matriz X que verifique $XA = B^2$; siendo $A = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$ y $B = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$.

10. Hallar la matriz X que verifique XA + B = C, siendo:

$$A = \begin{pmatrix} 0 & 2 & 0 \\ 3 & 0 & -3 \\ 0 & 1 & 2 \end{pmatrix}, B = \begin{pmatrix} 4 & -2 & 1 \\ 5 & 1 & -3 \end{pmatrix} y C = \begin{pmatrix} 1 & -3 & 5 \\ -2 & 4 & -6 \end{pmatrix}.$$

- **11.** Determinar las matrices X e Y sabiendo que: $\begin{cases} X + Y = \begin{pmatrix} 2 & 4 \\ -4 & 2 \end{pmatrix} \\ 3Y X = \begin{pmatrix} -2 & 8 \\ -12 & 2 \end{pmatrix} \end{cases}$
- **12.** Hallar todas las matrices $A = \begin{pmatrix} a & a \\ 0 & b \end{pmatrix}$ distintas de la matriz $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ tales que $A^2 = A$. Para una cualquiera de las matrices obtenidas, calcular $M = A + A^2 + \dots + A^{10}$.
- **13.** Dada la matriz $A = \begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix}$, hallar la matriz B para la cual se verifica A + B = AB.
- **14.** Dada la matriz $A = \begin{pmatrix} 3 & -4 \\ 2 & -3 \end{pmatrix}$ encontrar las matrices $B = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ tales que AB = -BA.
- **15.** Calcular una matriz cuadrada X sabiendo que verifica $XA^2 + BA = A^2$, siendo

$$A = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix} \text{ y } B = \begin{pmatrix} 0 & 0 & -2 \\ 0 & -2 & 0 \\ -2 & 0 & 0 \end{pmatrix}.$$

- **16.** Dadas las matrices $A = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 2 & -1 \\ 1 & -1 \end{pmatrix}$, $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, hallar una matriz X tal que AXB = I.
- **17.** Se sabe que la matriz $A = \begin{pmatrix} 0 & 3 & 2 & -1 \\ 7 & 4 & 1 & -6 \\ -9 & -2 & 1 & 7 \\ 2 & 5 & 3 & -3 \end{pmatrix}$ verifica la igualdad $A^2 = A + I$, siendo I la matriz identidad. Calcular A^{-1} y A^4 .

- **18.** Sean las matrices $A = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 8 & -9 \\ 6 & -7 \end{pmatrix}$. Hallar una matriz X tal que $XAX^{-1} = B$.
- **19.** Determinar los valores de x, y, z para que se verifique la igualdad $\begin{pmatrix} 1 & y \\ x & z \end{pmatrix} \begin{pmatrix} 1 & x \\ y & z \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}$.
- **20.** Sea k un número natural y sean las matrices $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 1 & 2 \end{pmatrix}$.

Calcular \boldsymbol{A}^k y hallar la matriz \boldsymbol{X} que verifica la ecuación $\boldsymbol{A}^k \boldsymbol{X} = \boldsymbol{B}\boldsymbol{C}$.

- **21.** Dadas las matrices $A = \begin{pmatrix} 5 & 2 & 0 \\ 2 & 5 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ y $B = \begin{pmatrix} a & b & 0 \\ c & c & 0 \\ 0 & 0 & 1 \end{pmatrix}$, encontrar las condiciones que deben cumplir a, b y c para que se verifique AB = BA. Para a = b = c = 1, calcular B^{10} .
- **22.** Para cada número entero n , se considera la matriz $A_n = \begin{pmatrix} \cos nx & \sin nx \\ -\sin nx & \cos nx \end{pmatrix}$, $x \in \mathbb{R}$. Comprobar que $A_n \cdot A_m = A_{n+m}$ y como aplicación calcular A_n^{-1} .
- **23.** Siendo $A = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix}$, $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, comprobar que $A^2 = 2A I$. Determinar la matriz inversa de A y la matriz A^8 .
- **24.** Resolver la ecuación matricial $\begin{pmatrix} 3 & 2 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} x & y \\ z & t \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 29 & 40 \\ 34 & 47 \end{pmatrix}$.
- **25.** Calcular los valores del parámetro λ para que la inversa de la matriz $A = \begin{pmatrix} \lambda & -2 \\ 5 & -\lambda \end{pmatrix}$ coincida con su opuesta.
- **26.** Determinar todas las matrices $A = \begin{pmatrix} 2 & a \\ b & c \end{pmatrix}$ tales que su inversa sea 2I A, donde $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **27.** Dada la matriz $A = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$, hallar una matriz X tal que $AXA = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix}$.

- **28.** Dadas las matrices $A = \begin{pmatrix} 0 & -1 & -2 \\ -1 & 0 & -2 \\ 1 & 1 & 3 \end{pmatrix}$, $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ determinar, si es posible, un valor de λ para el que la matriz $(A \lambda I)^2$ sea la matriz nula.
- **29.** Se consideran las matrices $A = \begin{pmatrix} 2 & 2 & -1 \\ -1 & -1 & 1 \\ -1 & -2 & 2 \end{pmatrix}$, $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Calcular $\begin{pmatrix} A I \end{pmatrix}^2$ y haciendo uso del resultado calcular A^4 .
- **30.** Sea M una matriz real cuadrada de orden n que verifica la identidad $M^2 2M = 3I$, donde I denota la matriz identidad de orden n . Se pide:
 - Estudiar si existe la matriz inversa de M . En caso afirmativo, expresar M^{-1} en términos de M e I .

 - Hallar todas las matrices de la forma $M = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$ que verifican la identidad del enunciado.
- **31.** Hallar todas las matrices X tales que XA = AX, siendo A la matriz $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
- **32.** Sea A una matriz real cuadrada de orden n que verifica la igualdad $A^2 = I$, siendo I la matriz identidad de orden n . Se pide:
 - Expresar A^{-1} en términos de A .
 - $-\hspace{0.1cm}$ Expresar $\emph{A}^{\it n}$ en términos de $\emph{A}\hspace{0.1cm}$ e \emph{I} , para cualquier número natural \emph{n} .
 - $\quad \text{Calcular a para que $A^2=I$, siendo A la matriz $A=\begin{pmatrix} 1 & 1 \\ 0 & a \end{pmatrix}$.}$
- **33.** Dada la matriz $A = \begin{pmatrix} 0 & 3 & 4 \\ 1 & -4 & -5 \\ -1 & 3 & 4 \end{pmatrix}$, se pide:
 - Comprobar que se verifica la igualdad ${\it A}^3+I=0$, siendo $\it I\,$ la matriz identidad y $\it 0\,$ la matriz nula.
 - Justificar que A tiene inversa y obtener A^{-1} .
 - Calcular A^{100} .
- **34.** Hallar las matrices $A = \begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix}$, que cumplan $A^3 = A$.

- **35.** Se sabe que una matriz no nula A verifica $A^2=A$. Desarrolla la expresión matricial $\left(A-\mu I\right)^3$, siendo I la matriz identidad y μ una constante. Calcular μ sabiendo que se verifican las relaciones $A^2=A$ y $\left(A-\mu I\right)^3=A-\mu^3 I$.
- **36.** Encontrar un número real $\lambda \neq 0$, y todas las matrices $B \in M_{2\times 2}$ (distintas de la matriz nula), tales que $B \cdot \begin{pmatrix} \lambda & 0 \\ 3 & 1 \end{pmatrix} = B \cdot \begin{pmatrix} 3 & 0 \\ 9 & 3 \end{pmatrix}$
- **37.** Resolver la ecuación matricial XA = B + C, donde

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$

38. Sabiendo que la matriz $A = \begin{pmatrix} 3 & -2 & -2 & 4 \\ 6 & -5 & -6 & 12 \\ 3 & -3 & -2 & 6 \\ 3 & -3 & -3 & 7 \end{pmatrix}$ verifica $A^2 = A$, determinar un valor no nulo del

número real λ tal que $\left(\lambda A-I\right)^2=I$, siendo I la matriz identidad.