Iniciación a la geometría analítica del espacio.

Ejercicio 1

Encuentra las ecuaciones de la recta paralela a $r \equiv \begin{cases} 4x + y - z = 3 \\ x - 2y - z = -3 \end{cases}$ y que contiene al punto P(1, -1, 2).

Ejercicio 2

Halla la ecuación implícita del plano que contiene a la recta $r:\begin{cases} x+y-z=2\\ 2x-y+2z=1 \end{cases}$ y es paralelo a la recta $s \equiv \frac{x-5}{2} = y = z+1$.

Ejercicio 3

Dado el plano $\pi \equiv 2x - y + 4z = -5$, halla la ecuación de un plano paralelo a π y que pase por el punto A(-1,-2,1).

Ejercicio 4

Encuentra la ecuación del plano que contiene a los puntos A(0,-3,2), B(-1,0,-2) y C(2,1,-1).

Halla las ecuaciones de la recta que pasa por el punto P(1,-3,2) y es perpendicular al plano $\pi \equiv 2x - y + z + 1 = 0.$

Ejercicio 6

Halla la ecuación del plano que contiene al punto P(-1,1,-3) y es perpendicular a la recta $r \equiv \begin{cases} x=1-\lambda \\ y=-3 \end{cases}$. $z=2\lambda$

Ejercicio 7

Encuentra las ecuaciones de la recta que pasa por el punto P(2,1,-2) y corta perpendicularmente a la recta $r = \frac{x+2}{-2} = \frac{y-1}{2} = z+1$.

Ejercicio 8

Halla la ecuación del plano que contiene a la recta $r \equiv \begin{cases} 2x - y + z = 1 \\ x + y + 2z = 5 \end{cases}$ y es perpendicular al plano $\pi \equiv 2x - y + 2z = 0$.

Ejercicio 9

Halla el punto simétrico de A(1,-2,1) con respecto al plano $\pi \equiv 3x-4y-2z+1=0$.

Ejercicio 10

Sean el plano $\pi \equiv x-2y+2z=3$ y los puntos A(1,-1,0) y B(1,1,2). Halla la mediatriz del segmento \overline{AB} que está contenida en el plano π .