CÁLCULO DE ÁREAS DE RECINTOS PLANOS

Ejercicio 1.

Hallar el área del recinto limitado por la gráfica de y = senx y el eje OX entre 0 y 2π .

Solución: 4

Ejercicio 2.

Calcular el área del recinto limitado por las curvas $y = x^3 - 3x + 8$, y = -3x, y las verticales x = -3, x = 0.

Solución: $\frac{81}{4}$

Ejercicio 3.

Calcular el área del recinto limitado por las curvas y = x, $y = x^2$, $y = \frac{x^2}{4}$.

Solución: $\frac{5}{2}$

Ejercicio 4.

Hallar el área de la región limitada por la curva $y = x^3 - 6x^2 + 8x$ y el eje OX.

Solución: 8

Ejercicio 5.

Hallar el área del recinto limitado por las parábolas $y = x^2$, $x = y^2$.

Solución: $\frac{1}{3}$

Ejercicio 6.

Calcular el área de la región limitada por la parábola $y^2 = 4x$ y la recta y = x - 3.

Solución: $\frac{64}{3}$

Ejercicio 7.

Calcular el área del menor de los recintos limitados por la circunferencia $x^2 + y^2 = 5$ y la hipérbola xy = 2.

Solución: $arcsen \frac{2}{\sqrt{5}} - arcsen \frac{1}{\sqrt{5}} + 2 \ln 2$

Ejercicio 8.

Hallar el área de la región comprendida entre la curva $y = \frac{1}{1+x^2}$ y la parábola $2y = x^2$.

Solución: $\frac{\pi}{2} - \frac{1}{3}$

Ejercicio 9.

Calcular el área de la región limitada por la curva $f(x) = (x^2 - x)e^x$ y el eje OX.

Solución: (3-e)

Ejercicio 10.

Calcular el área de la región limitada por la hipérbola $xy = m^2$ y el eje OX entre x = a y x = 3a (a > 0).

Solución: $m^2 \ln 3$

Ejercicio 11.

Calcular el área de la región limitada por $y = e^x$, $y = e^{-x}$, x = 1.

Solución: $\frac{(e-1)^2}{e}$

Ejercicio 12.

Hallar el área del recinto limitado por la parábola $y = x^2 - 2x - 8$ y la recta 2x - y - 3 = 0.

Solución: 36

Ejercicio 13.

Hallar el área de la región limitada por las curvas $y = x^3 - x$, $y = x^2$.

Solución: $\frac{13}{12}$

Ejercicio 14.

Calcular el área de la región limitada por $y = e^x$, $y = e^{-x}$, x = 1, x = -1 y el eje OX.

Solución: $\frac{2e-2}{e}$

Ejercicio 15.

Hallar el área de la región limitada por las curvas y = senx, y = cos x, $x = \frac{\pi}{4}$, $x = \frac{5\pi}{4}$.

Solución: $2\sqrt{2}$

Ejercicio 16.

Calcular el área de la región que encierra la curva $y = \cos x$ y el eje OX entre x = 0 y $x = 2\pi$.

Solución: 4

Ejercicio 17.

Calcular el área de la región comprendida entre la parábola $x = 2 - 2y^2$ y el eje OY.

Solución: $\frac{8}{3}$

Ejercicio 18.

Las gráficas de $f(x) = x^2$ y $g(x) = cx^3$, siendo c > 0, se cortan en los puntos (0,0) y en

 $\left(\frac{1}{c},\frac{1}{c^2}\right)$. Determinar c de manera que la región limitada entre esas gráficas y sobre el

intervalo $\left[0,\frac{1}{c}\right]$ tenga área $\frac{2}{3}$.

Solución: $c = \frac{1}{2}$

Ejercicio 19.

Hallar el área de la figura limitada por la curva y = x(x-1)(x-2) y el eje OX.

Solución: $\frac{1}{2}$

Ejercicio 20.

Hallar el área del recinto plano limitado por la curva $y^3 = x$, la recta y = 1 y la vertical x = 8.

Solución: $\frac{17}{4}$

Ejercicio 21.

Calcular el área de la figura comprendida entre la curva y = tgx, el eje OX y la recta $x = \frac{\pi}{3}$.

Solución: ln 2

Ejercicio 22.

Hallar el área de la figura comprendida entre la curva de Agnesi $y = \frac{a^3}{x^2 + a^2}$ y el eje de

abscisas.

Solución: πa^2

Ejercicio 23.

Calcular el área del segmento de la parábola $y = 2x - x^2$ que corta la recta y = -x.

Solución: $\frac{9}{2}$

Ejercicio 24.

Hallar el área de la figura limitada por la curva $y = x^3$, la recta y = 8 y el eje OY.

Solución: 12

Ejercicio 25.

Calcular el área de la figura comprendida entre las parábolas $y = \frac{x^2}{3}$ e $y = 4 - \frac{2}{3}x^2$.

Solución: $\frac{32}{3}$

Ejercicio 26.

Calcular el área de la superficie comprendida entre la circunferencia $x^2 + y^2 = 16$ y la parábola $x^2 = 12(y-1)$.

Solución: $\frac{16\pi - 4\sqrt{3}}{3} \ y \ \frac{32\pi + 4\sqrt{3}}{3}$

Ejercicio 27.

Hallar el área del recinto plano limitado por la *parábola de Neil* $y=x^{\frac{2}{3}}$ y la recta x=1 .

Solución: $\frac{3}{5}$

Ejercicio 28.

Calcular el área de la región limitada por la parábola semicúbica $y^2 = x^3$, $\begin{pmatrix} o \ también \ \begin{cases} x = t^2 \\ y = t^3 \end{pmatrix}$

y la recta vertical x = 1.

Solución: $\frac{4}{5}$

Ejercicio 29.

Hallar el área de la figura limitada por la curva $a^2y^2 = x^2(a^2 - x^2)$.

Solución: $\frac{4}{3}a^2$

Ejercicio 30.

Hallar el área de la región comprendida entre la curva $y = \frac{1}{x^2}$, el eje OX y la recta x = 1 (x > 1).

Solución: 1

Ejercicio 31.

Calcular el área contenida en el interior de la astroide $\begin{cases} x = a\cos^3 t \\ y = b \, sen^3 t \end{cases}.$

Solución: $\frac{3}{8}\pi ab$

Ejercicio 32.

Hallar el área de la figura limitada por la *cardioide* $\begin{cases} x = a(2\cos t - \cos 2t) \\ y = a(2sent - sen2t) \end{cases}$

Solución: $6\pi a^2$

Ejercicio 33.

Hallar el área de la región limitada por la *cisoide* $y^2 = \frac{x^3}{2a - x}$ y su asíntota x = 2a, (a > 0).

Solución: $3\pi a^2$

Ejercicio 34.

Calcular el área de la región comprendida entre el *estrofoide* $y^2 = \frac{x(x-a)^2}{2a-x}$ y su asíntota (a>0).

Solución: $a^2 \left(2 + \frac{\pi}{2}\right)$