LONGITUDES DE CURVAS, VOLUMEN Y SUPERFICIE DE CUERPOS DE REVOLUCIÓN.

- **1.** Calcular el volumen de la figura de revolución generada, al girar sobre el eje OX, la región plana limitada por las curvas $f(x) = (x-2)^2$ y $g(x) = x^2$, entre x = 0 y x = 2.
- **2.** Determinar el volumen generado al girar respecto al eje OX la región acotada por las gráficas de las funciones $f(x) = x^2$ y g(x) = 2x.
- 3. Calcular el volumen del cuerpo que se obtiene al hacer girar la curva $y=\frac{1}{\sqrt{2+x^2}}$ en torno al eje OX, entre x=0 y $x=\sqrt{2}$.
- **4.** Encontrar el volumen de la figura que se obtiene girando la gráfica de la función $f(x) = \sqrt{|x|} \cdot e^{-x^2}$ en torno al eje OX, en el intervalo [-2,2].
- 5. Se quiere fabricar un candelabro macizo a partir de la figura de revolución determinada por la función $f(x) = \begin{cases} (x-2)^2 + 1 & si \ x \in [0,2] \\ 1 & si \ x \in [2,4] \end{cases}$ al girar sobre el eje OX, cuyas magnitudes vienen expresadas en decímetros. Calcular el precio de dicho objeto, fabricado en cobre de 0,06 \in /cm³.
- **6.** Calcular el volumen del sólido de revolución obtenido al girar alrededor del eje OX el recinto limitado por la gráfica de la función $y = \sqrt{x} \cdot sen x$, $0 \le x \le \pi$ y la recta y = 0.
- 7. Hallar el volumen del sólido que engendra, al girar alrededor del eje OX, la región comprendida entre dicho eje y la gráfica de la función $f(x) = \begin{cases} x-1 & si \ 1 \le x < 3 \\ 2 & si \ 3 \le x \le 5 \end{cases}$.
- **8.** Calcular, mediante una integral, el volumen de la esfera de radio R.
- **9.** Hallar el volumen del cuerpo engendrado, al girar alrededor del eje OY, el recinto plano limitado por la curva $y = x^2$, el eje OY y las rectas y = 0 e y = 4.
- **10.** Calcular el volumen del cuerpo engendrado, al girar alrededor del eje OY, el recinto plano limitado por la curva y = cos x, $0 \le x \le \pi$ y el eje OY, entre y = -1 e y = 1.
- **11.** Calcular el volumen del elipsoide generado al girar sobre el eje OX la elipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

- **12.** Calcular el volumen del toro engendrado por la revolución alrededor del eje OX del círculo encerrado por la circunferencia $x^2 + (y-b)^2 = r^2$
- **13.** Calcular la longitud del arco de la curva $y = \frac{x^2}{8} \ln x$ comprendido entre las rectas x = 1 y x = e.
- **14.** Calcular la longitud del arco de la curva $y = \frac{e^x + e^{-x}}{2}$ comprendido entre las rectas x = 0 y x = 2.
- **15.** Hallar la longitud del arco de la curva $y^2 = 4x$ comprendido entre las rectas y = 0 e y = 2.
- **16.** Hallar la longitud del arco de la curva $(y+2)^2 = x^3$ comprendido entre los puntos (0,-2) y (4,6).
- **18.** Calcular la longitud de la curva que tiene por ecuaciones $\begin{cases} x = e^t \cdot sen t \\ y = e^t \cdot cos t \end{cases}, \quad 0 \le t \le \pi$
- **19.** Calcular la longitud de la astroide de ecuaciones $\begin{cases} x = a \cdot cos^3 t \\ y = a \cdot sen^3 t \end{cases}, \ 0 \le t \le 2\pi$
- **20.** Si la posición de un móvil en el plano viene dada por el par de funciones x=x(t), y=y(t), donde t representa el tiempo, entonces el espacio recorrido entre los instantes t_0 y t_1 es la logitud del arco definido por esas ecuaciones paramétricas para $t_0 \le t \le t_1$. Hállese el camino recorrido por un móvil, entre los instantes t=0 y t=2, si su movimiento viene dado por las ecuaciones:

a)
$$x = t^{2}$$

$$y = t^{3}$$
b)
$$x = t^{2}$$

$$y = t - \frac{t^{3}}{3}$$

- **22.** Hallar el área de la superficie engendrada por un giro completo, en torno al eje OX, del arco de la curva $y = x^3$ comprendido entre x = 0 y x = 2.
- **23.** Hallar el área de la superficie engendrada por el arco de parábola $y^2 = x$ comprendido entre (0,0) y (1,1), cuando éste gira 2π radianes en torno al eje OX.

- **24.** Calcular el área de la superficie generada al girar, alrededor del eje OX, el lazo de la curva de ecuación $9y^2 = x(3-x)^2$.
- **25.** Demostrar la fórmula del área de una esfera, como superficie de revolución al girar la circunferencia $x^2 + y^2 = R^2$ alrededor del eje OX.
- **26.** Hallar el volumen del sólido de revolución que se obtiene al hacer girar la gráfica de f(x) = -sen x alrededor del eje OX entre las abscisas x = 0 y $x = 2\pi$.
- **27.** Determinar el volumen del sólido engendrado al girar alrededor del eje OX la región limitada por la hipérbola $x^2 y^2 = a^2$ y la recta x = 2a.
- **28.** Determinar el volumen del sólido engendrado al girar alrededor del eje OY la región limitada por la hipérbola $x^2 y^2 = a^2$ y la recta x = 2a.
- **29.** Obtener el volumen del sólido generado al girar alrededor del eje OX el triángulo de vértices A = (1,0), B = (3,0) y C = (2,1).
- **30.** Obtener el volumen del sólido generado al girar alrededor del eje OX el triángulo de vértices A = (1,3), B = (3,5) y C = (5,5).
- **31.** Determinar el volumen del sólido generado al girar alrededor del eje OX la región limitada por la parábola $x = (y-5)^2$ y la recta x=9.
- **32.** Determinar el volumen del sólido engendrado al girar alrededor del eje OX el círculo de centro (0,5) y radio r=2.
- **33.** Consideramos el recinto limitado por el eje OX, la curva $y = x \cdot e^x$, y las recta verticales x = 0 y x = 1. Hallar el volumen del cuerpo engendrado por un giro completo de ese recinto en torno:
 - al eje OX
 - al eje OY
- **34.** Hallar el volumen del sólido de revolución que se obtiene al hacer girar la región plana limitada por las curvas $y = x^2$ y $x = y^2$ alrededor de:
 - el eje OX
 - el eje OY