Ejercicio 1.

Realiza las siguientes operaciones:

a)
$$5 \cdot 4 + 3 + 2 \cdot [3 + 2 \cdot (15 - 4 \cdot 3)] = 20 + 3 + 2 \cdot [3 + 2 \cdot (15 - 12)] = 23 + 2 \cdot [3 + 2 \cdot 3] = 23 + 2 \cdot [3 + 6] = 23 + 2 \cdot 9 = 23 + 18 = 41$$

b)
$$3 \cdot [1+4 \cdot (10-4)] - [12+3 \cdot (8-2)] = 3 \cdot [1+4 \cdot 6] - [12+3 \cdot 6] = 3 \cdot [1+24] - [12+18] = 3 \cdot 25 - 30 = 75 - 30 = 45$$

c)
$$2 \cdot 5 + 3 \cdot (9 - 8 : 4) - 3 \cdot 6 - 1 = 10 + 3 \cdot (9 - 2) - 18 - 1 = 10 + 3 \cdot 7 - 19 = 10 + 21 - 19 = 12$$

d)
$$3 \cdot 4^2 - \left[1 + 2 \cdot (2 \cdot 4 - 3)^2\right] : 3 - 2^2 \cdot 5 - 4 = 3 \cdot 16 - \left[1 + 2 \cdot (8 - 3)^2\right] : 3 - 4 \cdot 5 - 4 = 48 - \left[1 + 2 \cdot 5^2\right] : 3 - 20 - 4 = 48 - \left[1 + 2 \cdot 25\right] : 3 - 24 = 48 - \left[1 + 50\right] : 3 - 24 = 48 - 51 : 3 - 24 = 48 - 17 - 24 = 7$$

Ejercicio 2.

En un edificio hay 12 pisos, en cada piso 10 ventanas y en cada ventana 4 cristales iguales. El presupuesto para cambiar todos los cristales del edificio es de 34560 €. ¿Cuál es el precio de cada cristal?

$$(12 \ pisos)$$
× $(10 \ ventanas)$ × $(4 \ cristales)$ = $12 \cdot 10 \cdot 4$ = $480 \ cristales$
 $(presupuesto 34560 €)$: $(n^o \ de \ cristales \ 480)$ = 34560 : 480 = 72 € cada cristal.

Ejercicio 3.

— Explica razonadamente si el número $2^4 \cdot 3^5 \cdot 5^2$ es múltiplo de 112.

Vamos a comprobarlo: descomponemos 112 en factores primos $\Rightarrow 112 = 2^4 \cdot 7$ 112 es múltiplo de 7 porque lo contiene como factor y el número $(2^4 \cdot 3^5 \cdot 5^2)$ no es múltiplo de 7, por tanto $(2^4 \cdot 3^5 \cdot 5^2)$ no es múltiplo de 112 y 112 no es divisor de $(2^4 \cdot 3^5 \cdot 5^2)$.

— ¿Cuál es el cociente de dividir $2^4 \cdot 3^5 \cdot 5^2$ entre 72?

Descomponemos 72 en factores primos $\Rightarrow 72 = 2^3 \cdot 3^2$ 72 \downarrow el número $2^4 \cdot 3^5 \cdot 5^2$ es múltiplo de 72 porque lo contiene múltiples veces $2^4 \cdot 3^5 \cdot 5^2 = 2 \cdot 2^3 \cdot 3^2 \cdot 3^3 \cdot 5^2$ entonces el número $2^4 \cdot 3^5 \cdot 5^2$ es divisible entre 72 y el cociente será exacto: $(2^4 \cdot 3^5 \cdot 5^2) : (2^3 \cdot 3^2) = 2 \cdot 3^3 \cdot 5^2$

Ejercicio 4.

Un granjero ha recogido de sus gallinas 504 huevos morenos y 960 huevos blancos. Quiere envasarlos en recipientes con la mayor capacidad posible y con el mismo número de huevos (sin mezclar los blancos con los morenos). ¿Cuántos huevos debe poner en cada recipiente?

Debemos repartir (dividir) los huevos en recipientes iguales sin mezclarlos \Rightarrow buscamos divisores comunes de 504 y 960. Como los recipientes tienen que ser lo mayor posible, el divisor común que necesitamos es el máximo.

$$\begin{array}{l}
504 = 2^{3} \cdot 3^{2} \cdot 7 \\
960 = 2^{6} \cdot 3 \cdot 5
\end{array}
\Rightarrow M.C.D.(504, 960) = 2^{3} \cdot 3 = 24 \Rightarrow los \ recipientes \ deben \ contener \ 24 \ huevos.$$

Ejercicio 5.

Realiza las operaciones y expresa en forma de potencia:

$$-3 \cdot 3^{8} : 3^{5} \cdot 3^{4} = 3^{9} : 3^{5} \cdot 3^{4} = 3^{4} \cdot 3^{4} = 3^{8}$$

$$-(a^{3} \cdot a^{2})^{3} : (a^{4} : a)^{4} = (a^{5})^{3} : (a^{3})^{4} = a^{15} : a^{12} = a^{3}$$

$$-[(8^{9} : 2^{9}) \cdot 4^{2}] : 4 = [4^{9} \cdot 4^{2}] : 4 = 4^{11} : 4 = 4^{10}$$

$$-(2 \cdot 4^{8}) : 8^{4} = [2 \cdot (2^{2})^{8}] : (2^{3})^{4} = [2 \cdot 2^{16}] : 2^{12} = 2^{17} : 2^{12} = 2^{5}$$

Ejercicio 6.

Aproxima los siguientes números naturales al orden de unidades indicado:

	Aproximación a:			
Número	Centena de millar	Decena de millar	Unidad de millar	Centena
54 985 349	55 000 000	54 990 000	54 985 000	54 985 300
300 906 050	300 900 000	300 910 000	300 906 000	300 906 100
12 454 956	12 500 000	12 450 000	12 455 000	12 455 000

Ejercicio 7.

Efectúa y expresa en forma de potencia:

— *El doble de*
$$2^{20} = 2 \cdot 2^{20} = 2^{21}$$

— La mitad de la raíz cuadrada de
$$2^{12} = (\sqrt{2^{12}})$$
: $2 = 2^6$: $2 = 2^5$

$$(4^4 \cdot 2^5)^2 : (20^6 : 5^6) = [(2^2)^4 \cdot 2^5]^2 : 4^6 = [2^8 \cdot 2^5]^2 : 4^6 = [2^{13}]^2 : (2^2)^6 = 2^{26} : 2^{12} = 2^{14}$$

— Si
$$m = 3^4 \cdot 5^3$$
, entonces $m^3 = (3^4 \cdot 5^3)^3 = 3^{12} \cdot 5^9$

Ejercicio 8.

Calcula el mínimo común múltiplo de los números: $\left(2^3\cdot 18\right)$, $\left(25\cdot 6^2\right)$ y $\left(2\cdot 9^2\cdot 5\right)$.

$$(2^{3} \cdot 18) = 2^{3} \cdot 2 \cdot 3^{2} = 2^{4} \cdot 3^{2}$$

$$(25 \cdot 6^{2}) = 5^{2} \cdot (2 \cdot 3)^{2} = 5^{2} \cdot 2^{2} \cdot 3^{2}$$

$$(2 \cdot 9^{2} \cdot 5) = 2 \cdot (3^{2})^{2} \cdot 5 = 2 \cdot 3^{4} \cdot 5$$

$$\Rightarrow m.c.m. = 2^{4} \cdot 3^{4} \cdot 5^{2}$$

- ¿Es un cuadrado perfecto? Si porque $2^4 \cdot 3^4 \cdot 5^2 = \left(2^2 \cdot 3^2 \cdot 5\right)^2 \implies entonces tenemos que \sqrt{2^4 \cdot 3^4 \cdot 5^2} = 2^2 \cdot 3^2 \cdot 5$
- Encuentra otro múltiplo común. Por ejemplo $2 \cdot \left(2^4 \cdot 3^4 \cdot 5^2\right) = 2^5 \cdot 3^4 \cdot 5^2$ o también $3 \cdot \left(2^4 \cdot 3^4 \cdot 5^2\right) = 2^4 \cdot 3^5 \cdot 5^2$ y así tantos como quiera.