Ejercicio 1.

Realiza las siguientes operaciones con números enteros:

a)
$$-(-5)+(-3)\cdot 4-2\cdot (-7)=5+(-12)-(-14)=5-12+14=7$$

b)
$$6-2\cdot\lceil 5-(1-4)\cdot(2-3)\rceil = 6-2\cdot\lceil 5-(-3)\cdot(-1)\rceil = 6-2\cdot\lceil 5-3\rceil = 6-2\cdot 2 = 6-4=2$$

c)
$$[(2-5)\cdot(5-2)-(3-7)\cdot2]-[(-2)+(3-1)(3-4)]=[(-3)\cdot3-(-4)\cdot2]-[-2+2\cdot(-1)]=$$

= $[-9-(-8)]-[-2+(-2)]=[-9+8]-[-2-2]=(-1)-(-4)=-1+4=3$

d)
$$[3+(-3)^2+(-2)^2+(-2)^2+(-2)^2+(-2)^2+(-4)^2+($$

Ejercicio 2.

Ordena de menor a mayor los siguientes números enteros:

b)
$$-(-6)$$
, $+(-11)$, $|-4|$, -4^2 , $-(+2)$, $(-1)^2$, $|+3|$, $(-2)^3$, $-|-7|$, -3^0

$$\stackrel{\downarrow}{6} \quad \stackrel{\downarrow}{-11} \quad \stackrel{\downarrow}{4} \quad \stackrel{\downarrow}{-16} \quad \stackrel{\downarrow}{-2} \quad \stackrel{\downarrow}{1} \quad \stackrel{\downarrow}{3} \quad \stackrel{\downarrow}{-8} \quad \stackrel{\downarrow}{-7} \quad \stackrel{\downarrow}{-1} \\
-4^2 < +(-11) < (-2)^3 < -|-7| < -(+2) < -3^0 < (-1)^2 < |+3| < |-4| < -(-6)$$

Ejercicio 3.

Calcula el máximo común divisor de los números $\left(4^2\cdot 3^4\cdot 50\right)$, $\left(56\cdot 3^3\cdot 5\right)$ y $\left(3^2\cdot 2^3\cdot 70\right)$

Estos números están descompuestos en factores pero no todos los factores son primos. Vamos a terminar el proceso:

$$\begin{vmatrix} 4^2 \cdot 3^4 \cdot 50 = \left(2^2\right)^2 \cdot 3^4 \cdot \left(2 \cdot 5^2\right) = 2^4 \cdot 3^4 \cdot 2 \cdot 5^2 = 2^5 \cdot 3^4 \cdot 5^2 \\ 56 \cdot 3^3 \cdot 5 = \left(2^3 \cdot 7\right) \cdot 3^3 \cdot 5 = 2^3 \cdot 3^3 \cdot 5 \cdot 7 \\ 3^2 \cdot 2^3 \cdot 70 = 3^2 \cdot 2^3 \cdot \left(2 \cdot 5 \cdot 7\right) = 2^4 \cdot 3^2 \cdot 5 \cdot 7 \end{vmatrix} \Rightarrow \begin{cases} el \ \text{máximo común divisor de esos tres números} \\ es \ 2^3 \cdot 3^2 \cdot 5 = 360 \end{cases}$$

Ejercicio 4.

Encuentra los tres primeros múltiplos comunes de los números 140 y 150 que tienen cinco cifras.

Los múltiplos comunes de 140 y 150 son múltiplos del mínimo común múltiplo de 140 y 150. Descomponemos en factores primos 140 y 150:

$$\begin{vmatrix}
140 = 2^2 \cdot 5 \cdot 7 \\
150 = 2 \cdot 3 \cdot 5^2
\end{vmatrix} \implies m.c.m.(140,150) = 2^2 \cdot 3 \cdot 5^2 \cdot 7 = 2100$$

Ejercicio 5.

Las gallinas de una granja avícola han puesto 45 360 huevos. Se han vendido la mitad de los huevos en cartones de dos docenas y media cada uno a 4 €/cartón y el resto de los huevos en envases de una docena. ¿A cuánto se han vendido estos últimos envases si sabemos que los ingresos totales han sido 6 804 €?

756 cartones a $4 \in$ cada uno \Rightarrow 756 · $4 = 3024 \in$ recaudados por la venta de los cartones. 6804 \in -3024 \in = 3780 \in corresponden a la venta de los envases de docena que son 1890. 3780:1890 = $2 \in$ \Rightarrow las docenas se vendieron a $2 \in$

Ejercicio 6.

Realiza las operaciones y expresa en forma de potencia:

a)
$$(-2)^9 \cdot 2^4 : (-2)^6 = (-2)^9 \cdot (-2)^4 : (-2)^6 = (-2)^{13} : (-2)^6 = (-2)^7$$

b)
$$(8^7:2^7):4^5=4^7:4^5=4^2$$

c)
$$4^5 \cdot 4^5 : 2^{10} = 4^{10} : 2^{10} = 2^{10}$$

$$d) \left(4^8 \cdot 8^4\right) : \left(2^4\right)^5 = \left[\left(2^2\right)^8 \cdot \left(2^3\right)^4\right] : 2^{20} = \left[2^{16} \cdot 2^{12}\right] : 2^{20} = 2^{28} : 2^{20} = 2^8$$

Ejercicio 7.

Al dividir cierto número N entre 60 obtenemos 50 de resto. ¿Qué resto obtendremos si dividimos el mismo número N entre 12? ¿Cuánto aumenta o disminuye el cociente al realizar esta nueva división?

Entonces tenemos que $N = 60 \cdot C + 50$, siendo C el cociente de esa división.

Como 12 es divisor de 60, $60 = 12 \cdot 5 \implies N = (12 \cdot 5) \cdot C + 50$; pero 50 podemos dividirlo entre 12 obteniendo: $50 = 12 \cdot 4 + 2$; con lo que $N = 12 \cdot (5 \cdot C) + 12 \cdot 4 + 2 \implies$ tenemos $(5 \cdot C)$ veces 12 + otras 4 veces 12, en total $(5 \cdot C + 4)$ veces 12, y nos sobran 2 unidades de resto. $N = 12 \cdot (5 \cdot C + 4) + 2 \implies$ al dividir N entre 12 $\begin{cases} el$ nuevo resto es $2 \\ el$ nuevo cociente es $5 \cdot C + 4 \end{cases}$

Ejercicio 8.

Dado el número 38 449 956 000

Expresa con letra cuántas centenas tiene.

Trescientos ochenta y cuatro millones cuatrocientas noventa y nueve mil quinientas sesenta centenas.

$$38449956000 = 384499560 \cdot 100 = 384499560$$
 centenas

- Aproxímalo a las decenas de millar.
 - 38450000000
- Aproxímalo a las centenas de millón.
 - 38400000000
- Qué número obtenemos si le quitamos cinco decenas de millón.
 38399956000

Ejercicio 9.

En la siguiente división exacta, obtener el cociente en forma de potencia:

$$(2^{7} \cdot 3^{5} \cdot 5^{2} \cdot 7^{2}) : 5400 = (2^{7} \cdot 3^{5} \cdot 5^{2} \cdot 7^{2}) : (2^{3} \cdot 3^{3} \cdot 5^{2}) = 2^{4} \cdot 3^{2} \cdot 7^{2}$$

$$5400 = 2^{3} \cdot 3^{3} \cdot 5^{2}$$

Calcular, en forma de potencia, la siguiente raíz cuadrada exacta:

$$\sqrt{2^5 \cdot 3^3 \cdot 600} = \sqrt{2^5 \cdot 3^3 \cdot 2^3 \cdot 3 \cdot 5^2} = \sqrt{2^8 \cdot 3^4 \cdot 5^2} = 2^4 \cdot 3^2 \cdot 5$$
$$600 = 2^3 \cdot 3 \cdot 5^2$$