
APLICACIÓN DE LAS DERIVADAS. CÁLCULO DE RECTAS TANGENTES

Curva: y = f(x)

Recta tangente: $y = mx + b \implies \begin{cases} m = f'(x_0) \\ forma \ punto - pendiente \ y - y_0 = f'(x_0)(x - x_0) \end{cases}$

Punto de tangencia: $P(x_0, y_0)$; es común a la curva y a la recta $\Rightarrow \begin{cases} y_0 = f(x_0) \\ y_0 = m \cdot x_0 + b \end{cases}$

Ejercicios:

- **1.** Determina la ecuación de la recta tangente a $f(x) = \frac{x-2}{x+2}$ en el punto de abscisa x=2.
- **2.** Determina las ecuaciones de las rectas tangentes a la curva $y = x^2 3x + 8$ en los puntos de ordenada 6.
- **3.** Determina las ecuaciones de las rectas tangentes a $f(x) = x^2 + 5x 14$ en los puntos de intersección con el eje de abscisas.
- **4.** Encuentra los puntos en los que la recta tangente a la curva $f(x) = \frac{x}{2x+3}$ es paralela a la recta 3x-2y+15=0.
- **5.** Obtener el valor de k en la función $f(x) = \frac{1+kx}{x+k}$ sabiendo que, en el punto x=1, la recta tangente a la curva es paralela a r = 4x y + 11 = 0.
- **6.** Determina la recta tangente a la parábola $y = x^2$ y que es perpendicular a la recta 2x 3y + 1 = 0.

- **7.** Halla las ecuaciones de las rectas tangente y normal a la parábola $y = 2x^2 12x + 10$, en los puntos donde ésta corta al eje de abscisas.
- **8.** Halla el ángulo que forma la tangente a la curva $f(x) = \frac{2}{x}$ en el punto x = 4 con el semieje positivo de abscisas.
- **9.** Halla las ecuaciones de las rectas tangentes a la curva $x^2 8x 2y + 12 = 0$ en el punto y = 6.
- **10.** ¿En qué punto, la función $f(x) = -3x^2 + 7x 2$, tiene una tangente que forma un ángulo de 45° con el eje OX?
- **11.** Determina el ángulo en el que se cortan las curvas $f(x) = x^2$ y $g(x) = \sqrt{x}$. (El ángulo en el que se cortan dos curvas es el ángulo en el que se cortan sus rectas tangentes en dicho punto)
- **12.** Halla la ecuación de la recta tangente a la hipérbola $4x^2 y^2 = 4$ en el punto $P(\sqrt{5}, 4)$.
- **13.** Dada la función $y = 2x^2 + ax + b$, halla a y b para que tenga una tangente de pendiente m = -6 en el punto P(1,4).
- **14.** Halla las ecuaciones de las rectas tangentes a la parábola $y^2 4y + 4x 12 = 0$ en los puntos de corte con los ejes de coordenadas.
- **15.** Halla el ángulo que forman las rectas tangentes a las curvas $4x^2 + y^2 = 8$, $x \cdot y = 2$ en sus puntos comunes.
- **16.** La curva $y = ax^2 + bx + c$ pasa por el punto P(1,7), y es tangente en el origen de coordenadas a la bisectriz del segundo cuadrante. Halla la ecuación de la curva.
- **17.** Se considera una función f(x), definida en un entorno del punto x = 3. Sabiendo que la recta de ecuación y 5x + 13 = 0 es tangente a la gráfica de f(x) en el punto (3, f(3)), calcula f(3) y f'(3).
- **18.** Dada la función $f(x) = \frac{x^2 + 1}{x + 1}$, encuentra las ecuaciones de las rectas que son tangentes a su gráfica y perpendiculares a la bisectriz del primer cuadrante.

- **19.** Sea la función $f(x) = \frac{x \sqrt{x}}{x + \sqrt{x}}$. Hallar las ecuaciones de la tangente y la normal a su gráfica en el punto (4, f(4)).
- **20.** Sea f(x) una función tal que $|f(x)| \le x^2$. Demostrar que f(x) es derivable en cero.
- **21.** Sea la función $f(x) = 2\sqrt{x-1}$. Calcular las tangentes a su gráfica que tienen pendiente $m = \frac{1}{\sqrt{3}}$.
- **22.** Sea la curva de ecuación $y = \frac{x+1}{x-1}$. Hállese el área del triángulo determinado por el eje de abscisas y por las rectas tangente y normal a la curva en el punto (2, f(2)).
- **23.** La recta y = 2x 7 es tangente a la gráfica de la función $f(x) = x^3 + ax^2 + bx + 2$ en el punto de abscisa 1. Calcula a y b.
- **24.** Sea la curva $y = \frac{bx-1}{bx+1}$. La recta y = 6x + a es tangente a la curva en el punto de abscisa 0. Calcula razonadamente a y b.
- **25.** La parábola $y = x^2 + bx + c$ es tangente a la recta y = x en el punto (1,1). Halla la ecuación de la tangente en el punto (2, f(2)).
- **26.** En los puntos x = -3 y x = 1, la recta tangente a la curva $y = x^3 + bx^2 + cx + 2$ es horizontal. Determina los valores de b y c.
- **27.** Dada la curva $y=\sqrt{2x^3}$, ¿en qué punto de dicha curva la recta tangente es perpendicular a la de ecuación 4x+3y=0 ?
- **28.** Sea la curva $y = \frac{x-4}{x-2}$. Comprueba que las tangentes en los puntos de intersección con los ejes de coordenadas son paralelas.
- **29.** Encuentra el ángulo bajo el que se cortan la curva $f(x) = \sqrt{e^x}$ y la recta x 3 = 0.
- **30.** Calcula las rectas tangentes a la curva $f(x) = \begin{cases} x^2 \cdot e^{2x} & si \ x \le 0 \\ x \cdot \ln x & si \ x > 0 \end{cases}$ en los puntos x = 1 y x = -1.