ESPACIO VECTORIAL V2

 V_2 - Espacio vectorial de los vectores libres del plano.

- **1.** Dada la base $B = \{\vec{e}_1, \vec{e}_2\}$ de V_2 y los vectores $\vec{u}_1, \vec{u}_2 \in V_2$, con $\vec{u}_1 = (2, -1), \vec{u}_2 = (1, 3)$ cuyas coordenadas viene expresadas en la base $B = \{\vec{e}_1, \vec{e}_2\}$.
 - Probar que $B' = \{\vec{u}_1, \vec{u}_2\}$ es una base de V_2 .
 - Dado el vector $\vec{v} = (-3,5)$ en la base B, encontrar las coordenadas de \vec{v} en la base B'.
- **2.** Sea el punto P de coordenadas P(3,-2) en el sistema de referencia $R = \{O; \vec{e}_1, \vec{e}_2\}$. Calcular las coordenadas del punto P en el sistema de referencia $R' = \{O'; \vec{u}_1, \vec{u}_2\}$, sabiendo que O'(-1,2) en R y $\vec{u}_1 = \vec{e}_1 + \vec{e}_2$, $\vec{u}_2 = 3\vec{e}_1 \vec{e}_2$.
- **3.** Dado el segmento de extremos A(2,-1) y B(3,5), calcular las coordenadas de los cuatro puntos que dividen el segmento \overline{AB} en cinco partes iguales.
- **4.** Sean \vec{u} y \vec{v} dos vectores de V_2 tales que $|\vec{u}| = 3$, $|\vec{v}| = 4$, $ang(\widehat{\vec{u},\vec{v}}) = 120^\circ$. Calcular:
 - $(\vec{u} + 2\vec{v}) \cdot (3\vec{u} \vec{v})$
 - $|2\vec{u} \vec{v}|$
- **5.** Consideramos la base de V_2 , $B = \{\vec{u}_1, \vec{u}_2\}$ con $\vec{u}_1 = (1,2)$, $\vec{u}_2 = (-1,5)$, cuyas coordenadas están expresadas en la base canónica (ortonormal). Si tenemos los vectores $\vec{v} = (3,1)$ y $\vec{w} = (4,-2)$ con coordenadas en la base $B = \{\vec{u}_1,\vec{u}_2\}$, calcular $|\vec{v}|$, $|\vec{w}|$, $|\vec{v}|$, $|\vec{v}|$, $|\vec{v}|$ $|\vec{v}|$.
- **6.** Dada la base de V_2 , $B = \{\vec{u}_1, \vec{u}_2\}$ tal que $|\vec{u}_1| = 2$, $|\vec{u}_2| = 3$, $ang(\hat{\vec{u}_1}, \hat{\vec{u}_2}) = 45^\circ$, encontrar el valor de k, para que los vectores $\vec{v} = (2, -4)$ y $\vec{w} = (-3, k)$, expresados en la base B, sean perpendiculares.
- **7.** Los vectores \vec{u} y \vec{v} forman un ángulo de 60° y, además, $|\vec{u}| = 5$ y $\vec{u} \cdot \vec{v} = 15$.
 - Calcula $\vec{u} \cdot (\vec{u} + \vec{v})$ y $2\vec{v} \cdot (3\vec{u} \vec{v})$
 - Halla la longitud del vector $\vec{u} \vec{v}$

- **8.** Sean los vectores $\vec{u}_1 = (2,-1)$ y $\vec{u}_2 = (-1,3)$, cuyas coordenadas están expresadas en la base canónica $\{\vec{e}_1,\vec{e}_2\}$.
 - Encuentra el ángulo que forman \vec{u}_1 y \vec{u}_2 .
 - Si el vector \vec{v} tiene coordenadas $\vec{v} = (5, -3)$ en la base $\{\vec{e}_1, \vec{e}_2\}$, calcula las coordenadas de \vec{v} en la base $\{\vec{u}_1, \vec{u}_2\}$.
- **9.** Dada la base canónica $B = \{\vec{e}_1, \vec{e}_2\}$ de V_2 , encuentra las coordenadas de dos vectores $\vec{u}_1, \vec{u}_2 \in V_2$, distintos de \vec{e}_1 y \vec{e}_2 , tales que $\{\vec{u}_1, \vec{u}_2\}$ sea una base ortonormal de V_2 .
- **10.** Sean los vectores $\vec{u}_1 = (1, -2)$ y $\vec{u}_2 = (3, 1)$, cuyas coordenadas están expresadas en la base canónica $\{\vec{e}_1, \vec{e}_2\}$, y \vec{v} un vector de coordenadas $\vec{v} = (-2, 3)$ en la base $\{\vec{u}_1, \vec{u}_2\}$.
 - Calcula el módulo del vector \vec{v} .
 - Encuentra las coordenadas, en la base $\{\vec{u}_1,\vec{u}_2\}$, de un vector \vec{w} que sea perpendicular a \vec{v} .
- **11.** Si \vec{a} \vec{y} \vec{b} son dos vectores tales que $|\vec{a}| = 1$, $|\vec{b}| = 2$ \vec{y} $ang(\vec{a}, \vec{b}) = 60^{\circ}$ entonces, sabiendo que $\vec{x} = 3\vec{a} \vec{b}$ \vec{e} $\vec{y} = \vec{a} + \vec{b}$, calcula $3\vec{x} \cdot (\vec{x} + 2\vec{y})$ y el ángulo que forman los vectores \vec{x} e \vec{y} .
- **12.** Dos vectores \vec{a} y \vec{b} son tales que $|\vec{a}| = 10$, $|\vec{b}| = 5\sqrt{3}$ y $(\vec{a} + \vec{b}) \cdot (\vec{a} 2\vec{b}) = 25$. Halla el ángulo que forman los vectores \vec{a} y \vec{b} .