MÁXIMOS Y MÍNIMOS DE UNA FUNCIÓN. INTERVALOS DE CRECIMIENTO.

Teniendo en cuenta los siguientes criterios:

Si f'(x) > 0 para todos los puntos x de un intervalo, f(x) es creciente en ese intervalo.

Si f'(x) < 0 para todos los puntos x de un intervalo, f(x) es decreciente en ese intervalo.

Si f(x) es una función tal que $f'(x_0) = 0$. Si $f''(x_0) < 0$, f(x) tiene en x_0 un máximo (relativo) y, si $f''(x_0) > 0$, la función presenta en x_0 un mínimo (relativo).

Ejercicios

1. Encuentra los intervalos de crecimiento y decrecimiento y, los máximos y mínimos de las siguientes funciones:

$$f(x) = x^3 + x^2 - x + 5$$

$$f(x) = \frac{1}{1+x^2}$$

$$f(x) = 2x^3 + 3x^2 - 12x - 1$$

$$f(x) = \frac{x^2 - 2}{x^2 - 1}$$

$$f(x) = x^2 - 2\ln x$$

$$f(x) = \ln(x^2 + 4)$$

$$f(x) = \frac{3}{x^2 - 6x + 10}$$

$$f(x) = x \cdot e^x$$

$$f(x) = (x^2 - 11x + 31) \cdot e^x$$

$$f(x) = \frac{x^3}{e^{2x}}$$

$$f(x) = e^{x^3 - 6x + 2}$$

$$f(x) = e^{2x} + 4e^{-2x}$$

$$f(x) = x - \ln(1 + x^2)$$

$$f(x) = \frac{x}{x^2 - 6x - 16}$$

$$f(x) = x^3 - 3\ln x + 2$$

$$f(x) = \left(x^2 - 1\right)^{-1}$$

$$f(x) = x + sen x$$

$$f(x) = \frac{x^2 + x + 1}{x^2 - 1}$$

$$f(x) = \frac{(x+1)^3}{(x-1)^2}$$

$$f(x) = x \cdot e^{-x}$$

$$f(x) = \frac{x}{3} - \sqrt[3]{x}$$

$$f(x) = \frac{x^2 - 3x + 2}{(x+1)^2}$$

$$f(x) = e^x \cdot sen x$$

$$f(x) = \cos x + \frac{\cos 2x}{2}$$

2. Calcula el valor de k en $f(x) = x^2 + kx + 3$, sabiendo que la derivada de f(x) se anula en x = 2.

- **3.** Calcula a y b en la función $f(x) = ax^2 + bx$, si sabes que pasa por el punto (2,1) y que, en ese punto, la derivada vale 5.
- **4.** Calcula el valor de k para el cual la función $f(x) = x^3 + kx^2 3x$ tiene un mínimo relativo en x = 3.
- **5.** Dada la función $f(x) = ax x^2 + b$, halla los valores de a y b para que esta función tenga un máximo relativo en el punto (2,7).
- **6.** Calcula $a ext{ y } b ext{ en } f(x) = \frac{ax+1}{2x+b}$, sabiendo que hay un máximo en el punto (1,3).
- **7.** Sea la función $f(x) = x^3 + mx^2 + nx + p$. Se sabe que f(1) = 1, y que f(x) tiene un máximo en el punto x = -4 y un mínimo en el punto x = 0. Calcula m, n y p.
- **8.** La función $f(x) = ax^3 + bx^2 + cx + d$ tiene un máximo en el punto (0,4) y un mínimo en el punto (2,0). Encuentra los valores de a, b, c y d.
- **9.** La función $f(x) = \frac{ax^2 + 1}{a + x}$ tiene un máximo o mínimo en x = 1. Razona que debe cumplirse que $a = \frac{1}{2}$ y, averigua si es un máximo o es un mínimo.
- **10.** Calcula a y b para que la función racional $f(x) = \frac{x^2 + ax 3}{x^2 + bx + 5}$ tenga un máximo en x = 3 y un mínimo en x = 2.
- **11.** Define a trozos las funciones siguientes y después encuentra los intervalos de crecimiento y decrecimiento y, los máximos y mínimos:

$$f(x) = 2 + |x + 3|$$
 $f(x) = x^3 - 3|x|$

$$f(x) = \frac{1}{1 - |x|}$$

$$f(x) = e^{|x+3|}$$

12. Encuentra los intervalos de crecimiento y decrecimiento y, los máximos y mínimos de la función

$$f(x) = \begin{cases} x^2 \cdot e^{2x} & \text{si } x \le 0 \\ x \cdot \ln x & \text{si } x > 0 \end{cases}.$$